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Abstract: A non-unit bidiagonal matrix and its inverse with simple structures are introduced. These 

matrices can be constructed easily using the entries of a given non-zero vector without any 

computations among the entries. The matrix transforms the given vector to a column of the identity 

matrix. The given vector can be computed back without any round off error using the inverse matrix. 

By applying such matrices, a simple and direct factorization of a given non-singular triangular 

Toeplitz matrix is presented here. This factorization contributes to inversion of the triangular 

Toeplitz matrix in a convenient way. Another significant outcome of the factorization is that it 

establishes a recurrence relation among finite dimensional non-singular k x k triangular Toeplitz 

matrices, k =1, 2,…,n. The result can be easily extended to n x n symmetric triangular matrices. 
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I. INTRODUCTION 

Bjorck and Pereyra in 1970 used in their classical work [1] unit bidiagonal matrices with 

constant off-diagonal entries and diagonal matrices for the LU representation of the inverse of 

Vandermonde matrices. A non-unit bidiagonal matrix with row-wise constant entries having opposite 

signs is also used for representing the factors. A recent extension of this approach is adapted to 

Vandermonde like matrices in Nicholas Higham’s book [2]. Regarding the stability of confluent 

Vandermonde systems, weak stability and weakly stable algorithm concepts are presented in [2]. 

Weakly stable algorithms solve the dual of non-confluent or confluent Vandermonde or 

Vandermonde like systems with good accuracy in floating point arithmetic, when there will be not 

much subtractive cancellations in the inverse Vandermonde UL representation. The desirable 

criterion for making a minimal amount of subtractive cancellation is that those individual factors of 

U and L have alternating sign pattern for A=(aij);-1
(i+j)

aij ≥ 0. The lower triangular components of L 

are bidiagonal matrices with row-wise constant entries and alternate sign patterns. Higham reports 

that these components will maintain alternating sign pattern if the points are distinct and arranged in 

increasing order. Note that Higham does not consider the properties of these matrices outside this 

stability and accuracy domain and later extended their use for deriving stable factors for 

Vandermonde like matrices [2] by extending the Bjorck and Pereyra factorization of Vandermonde 

matrices. It can also be noted that in these two works, the linear transformation that maps a given 

vector to a column of the identity matrix is not at all considered and inverse of this transformation is 
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not utilized for the factorization of Vandermonde System matrices and other matrical properties are 

not taken into consideration. From a totally different background and new perception we are going to 

introduce the lower bidiagonal version of these matrices and present several interesting features with 

such matrices. An interesting quoting from Gasca and Pena [3] is as follows. “ At our knowledge, the 

uniqueness of different factorizations, which is a consequence of the uniqueness of elimination 

process, is a novelty in this type of results”. It is applicable in this context of introducing the 

proposed bidiagonal matrices for factorization of non-singular n X n triangular Toeplitz matrices. 

Toeplitz systems arise in vital application areas such as digital signal processing, linear 

speech prediction, communication network queue etc. [8,9]. Toeplitz matrices have constant entries 

along the diagonals. They are subset of the class of persymmetric matrices. Persymmetric   matrices 

are symmetric about their northeast-southwest diagonals. This discussion is centered on the theme 

that a non-singular triangular Toeplitz matrix is closely associated with the bidiagonal operator 

matrix and its inverse presented here. The reason is that all these matrices can be constructed from a 

given set of numbers.  For example, if a Toeplitz matrix is also symmetric, then it can be defined by 

a given set of n real quantities, say r1, r2,.., rn as below 
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Typically T4 can be presented as below.  
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The organization of the paper is as follows. First we will introduce the bidiagonal matrix, its 

inverse and basic features which make it an ideal choice for factorization of matrices. After that we 

will discuss the factorization of a given nXn non-singular triangular Toeplitz Matrix, representation 

of its factors in a convenient way using the bidiagonal matrix and its inverse, and inversion of the 

given triangular Toeplitz matrix.  This is followed by computational cost of the approach and 

concluding remarks. 

II. THE BIDIAGONAL MATRIX AND ITS FEATURES 

Let a non-zero vector n,..,i,x;xxxx i

T

n 21021  ][  be given. Consider the lower 

bidiagonal matrix and its inverse defined as below. 
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Typical examples for the case n=3 is as below. 
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If we look at the columns in (2.2), these are the given vector itself and its projection to the 

subspaces of dimension k=n-1, n-2,…,1. These columns constitute a basis and hence can represent 

any given vector in a unique way. Since the first column itself is the very same vector, the linear 

combination can be only the entries from 1e . This forms the elementary theory behind the 

factorization. Clearly 1ex)x(B   and xe)x(B 

1

1 . If in the given vector x, j,,,k;xk 21  are 

zeros and n,,jk;xk 10   then the first j rows in  xB  can be set identical to that of the 

identity matrix and then 
1 jex)x(B  and xe)x(B j 



1

1
. In general  xB  has to be appropriately 

tuned with the rows and columns of the identity matrix so that mapping of x to a column of the 

identity matrix is possible. In any case, the mapping will be to another vector y whose entries will be 

consisting of  ±1 and zeros. Accept that as discussed in J.H. Wilkinson [4], a negligibly small error, 

say 
t

e
 2 , where the computer has t digits mantissa, is bound to occur.  Still the mapping and 

inverse mapping will be always without any round off errors because of the structure of the matrix 

(2.2) and the presence of unity. See Plamen Koev [5] that relative accuracy will be affected when 

floating point subtractions are involved as cancellation of significant digits during subtraction of 

intermediate quantities. This is applicable to the proposed factorization also. But the intermediate 

quantity is exactly maintained in the inverse of the operator matrix. This structural feature can thus 

contribute to preserve the relative accuracy. Recall the remarks of Higham [2] about the association 

of these matrices with his definition of weak stability in maintaining accuracy and stability. These 

operator matrices can be tuned appropriately with the columns of the identity matrix in presence of 

zero elements of a column instead of row or column exchanges.  

The matrices in (2.1) and (2.2) are the results of applying a sequence of column or row 

operations in corresponding diagonal matrices and these can be illustrated as follows. 

Consider a lower triangular matrix  
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Then, we have 
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A. Proposition 2.1 

matricesThe  

          )nx,,x,x(diagxD)x(DT)x(B;TxDxB 21
11

11
1







where  (2.5) 

It is evident that the matrices in (2.1) and (2.2) are derived from the corresponding diagonal 

matrices by elementary column operations and whenever a diagonal element is zero it is equivalent 

to the cancellation of the column operations with the particular diagonal element. Thus   the column 

is reverted to the corresponding column of the identity matrix in (2.3) and (2.4).  

B. Proposition 2.2 

that follows it (2.4) and (2.3) from and (2.1) npropositio From  
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Equations (2.6) and (2.7) are the elementary bidiagonal decomposition (EBD) of the matrices 

used in the factorization technique. 

 Consider the matrix  

)diag(x)B(x(x)B)x(L
-1       (2.8) 

This is an interesting lower triangular matrix and this construction (2.8) is possible only when 

the entries of x are distinct and non-zero. A typical 44 matrix of (2.8) is as below. 
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The matrix in (2.9) has an eigen system where in the general case eigen vector corresponding 

to x1 is  Tnxxx 21 , eigen vector corresponding to x2 is  Tnxx 20 and so on and 

that corresponding to xn is  Tnx 00 . The diagonal entries will constitute the terms (xj - xj+1) 

of each column of the matrix (2.9) and the fractional terms will be determined by the entries of its 

eigen vectors. For example, (xj
n

 - xj+1
n
) will be the terms corresponding to its n

th
 power whereas the 

fractional terms will not be changing. Thus merely by looking at the matrix, one can easily derive the 

eigen system. The attraction is that its inverse and any power can be easily arrived at without any 

computations. In the open interval  10, , this system attains the minimum and maximum when the 

off-diagonal entries are uniformly approaching zero. This matrix corresponds to all strictly 

monotonic decreasing and increasing sequences in the interval  10, and correspondence among such 

sequence matrices are realized by similarity transformation using appropriate diagonal matrices. 

Recall the remarks by Higham [2] that entries of the inverse Vandermonde lower triangular 

components should be distinct and in ascending order. This is a pointer to the association of the eigen 

vectors of matrices (2.9) with such special matrices which are basically generated out of given n 

distinct quantities. 

C. Proposition 2.3 

Given a non-zero n-vector   n,..,i,x;xxxx i

T

n 21021    then 2
n-1

 bidiagonal 

matrices can be constructed with absolute values of the entries same as that of type (2.1), all of 

which will map x to e1. 

Proof: Let B be a lower bidiagonal matrix and consider the equation 

0121  kk xαxα    (2.10) 

In (2.10) let 1α and 2α be two adjacent entries of a row of B. Assume that 2α is a diagonal 

element and 1α is the corresponding sub-diagonal element in B. For the first row in B, there is only 

one unique choice as 121 10 x/α;α  . For the rest of the rows, assigning one of these unknowns a 

value, the other can be obtained. So for the remaining )n( 12  entries, there are infinitely many 

choices. Here the choice with respect to the diagonal element is .n,...,,k;x/α k 2112   Then the 

off diagonal elements will be obviously .n,...,,k;x/α k 321 11    Accordingly with this choice we 

have settled for the matrix (2.1). But kk x/α;x/α 11 211   also will satisfy equation (2.10).  

Hence with respect to each of the n-1 rows, the entries can be filled in 2 ways and thus the result 

follows. 

One has the freedom to select a bidiagonal matrix of choice. Then there is a chance that 

resulting reduction process will be handicapped with the problem of inverting the bidiagonal matrix 

at every step in addition to disturbing the structural property of the given matrix. For example, P.V 

Sankar and A. K. Sen [7] report that the factorization algorithm proposed by them has the problem of 

inverting triangular matrices at every step. In the case of the proposed scheme, the operator matrix 

and its inverse can be easily constructed. These constructions do not call for any additional 

computations among the entries as in Neville or Gauss. With respect to the number of iterative steps 

to eliminate column elements, the proposed matrix completes it simultaneously in a single step as 

against the element-by-element reduction in Neville decomposition. Obviously the operator 

transforms the given vector to a column of the most stable identity matrix and in a stable way. In 
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short, from the infinite set of bidiagonal matrices of (2.10), an ideal bidiagonal matrix for 

factorization of a given matrix is presented. The detailed results for factorizing a given matrix using 

these non-unit bi-diagonal matrices are presented in Nair [6]. 

III. FACTORIZATION OF TRIANGULAR TOEPLITZ MATRIX 

Fu-Rong Lin,Wai-Ki Ching and M.K.Michael [10] present an approximate inversion method 

for triangular Toeplitz matrices based on trigonometric polynomial interpolation. To obtain an 

approximate inverse of high accuracy for a triangular Toeplitz matrix of size n, their algorithm 

requires two fast Fourier transforms (FFT) and one fast cosine transform of 2n-vectors. Kenneth S. 

Berenhaut, Daniel C. Morton and Preston T. Fletcher [11] provide an improvement on norm bound 

for the inverse of a lower triangular Toeplitz matrix with nonnegative entries.  Here a direct 

factorization process shall be introduced for inverting these matrices. The factorization will be 

restricted to the non-singular case so that rk ; k=1,2,..,n are non-zero real quantities. The significant 

outcome of this factorization process is that it establishes a recurrence relation among finite 

dimensional nXn triangular Toeplitz matrices. Consider the 4X4 triangular Toeplitz matrix, say, 

R4(r1,r2,r3,r4) where 
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 matrix, Rn(r1,r2,….,rn) can be factorized in an interesting way as presented 

below. Since Rn(r1,r2,….,rn) is completely defined by the n quantities rk ; k=1,2,..,n, for 

convenience, it may be factorized R4(r1,r2,r3,r4) and by analogy, generalize the result to nXn 

triangular Toeplitz matrices. So let it be proceeded with the factorization below. 

STEP-1 
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where   D1 =diag(r1,r2,r3,r4)       
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Now the factor F1 can be further decomposed as   F1= M1K1 as given in (3.2) below.  
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In the first factor of F1 in (3.2), M1, the lower right sub-matrix obtained by removing its first 

row and column is a 3X3, B(x)
-1

 matrix where x=[ 1/r2   1/r3  1/r4 ]
T
. Consider the second factor K1. 

Here the significance is that the lower right sub-matrix obtained similarly as in the case of M1, is the 

triangular Toeplitz matrix, say, R3(r1 , r2- r1 , r3- r2). The first factor M1 can be easily factorized as 

below. 







































1110

0110

0010

0001

1001

0101

0011

0001

1

4

3

2

311

r/

r/

r/
)(TNM   (3.3) 

Recall from Section-2, using proposition (2.1) the representation of B(x)
-1

 matrix using its 

column equivalent matrix of the identity matrix. Here (3.3) is a similar representation of the matrix 

M1. The inverse of the first factor, say N1 of M1 can be easily derived as given below. 
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The net result is that started with R4 (r1,r2,r3,r4), the above process factorized it as a product, 

consisting of another matrix K1 as below and other matrices with known inverses.  
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The whole of the step-1 can be thus summarized as 
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In (3.5.), the inverses of all the components are known except K1. But this is not an issue as 

the recurrence relation is now clear. That is the steps above can be repeated with the triangular  

Toeplitz component R3(r1 , r2- r1 , r3- r2) of K1 as below.  
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In the decomposition (3.6) of K1 above, the matrix F2 can be further factorized as in   step-1 

as given below. 
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The situation is similar to that in step-1. In M2 of (3.7), the lower right sub-matrix obtained 

by removing the first two rows and columns is B(x)
-1

 where x=[r2-r1  r3-r2]
T
. The lower right 

submatrix obtained in a similar way from K2 is a triangular Toeplitz matrix, say R2(r1,r2-2r1) 

respectively. As in Step-1, M2 can be further factorized as M2= N2 T2(1). Thus we have,  
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     (3.9) 

The whole of step-2 can be thus summarized as 

K1=D2N2T2(1)K2                                                               (3.10) 

That is, 
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Now, the third and final step-3 for factorizing K2 is presented as follows. 

STEP-3 

The matrix K2 can be easily decomposed as below 

K2= D31T2(1)D32                                  (3.12) 

That is, 
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In (3.12) T2(1) is column equivalent to the identity matrix. D31 and D32 are diagonal matrices 

where D32 is identical with the identity matrix I except for the last diagonal element. Thus 

factorization of the 4X4 triangular Toeplitz matrix R4 (r1,r2,r3,r4) is completed with the above step-3.  

The result can be easily extended to n x n symmetric Toeplitz matrices because of Cholesky 

decomposition. Both the lower and upper triangular factors will be the same Cholesky Toeplitz 

triangular matrix in this case. Since the Toeplitz triangular matrix has this recurrence relation, the 

Corresponding Cholesky triangular matrix also has this recurrence relation. Hence it follows that a 

full n x n symmetric Toeplitz matrix has also this recurrence relation. 

IV. SALIENT FEATURES AND COMPUTATIONAL COST 

The salient features of the factorization of the triangular Toeplitz matrix proposed here are; 

1) Each step j ends with a matrix Kj which has a triangular Toeplitz lower right sub-matrix 

component of dimension n-j ; j=1,2,…,n-1. The matrix has its first j columns and rows 

identical with that of the identity matrix. That is this factorization exposes a recurrence 

relation between Kj and Kj-1. 

2) At each step k, a diagonal matrix component Dk ; k=1,2,…,n-1 is involved whose    k-1 

columns and rows are identical with the identity matrix.  

3) The matrices Tk(1) and Nk at step-k as presented in (3.3) or (3.8) will constitute a matrix Mk 

which has a lower right sub-matrix B(xk)
-1

;k=1,2,….,n-2. 
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4) The above sub-matrix makes it possible to decompose a component matrix as in feature-i  

above. For example, it may be observed how Fj is decomposed as Mj and Kj in (3.2) or (3.7) 

for j=1,2,…,n. 

5) At step-(n-1), the process of factorization converges as presented in (3.12). Of the three 

components of Kn-1 , it may be observed that two components Dn-1 and Dn-1,1 are diagonal 

matrices and Dn-1,2
 
is identical with the identity matrix, except for the n

th
 diagonal element. 

The component Tn-1(1) is a column equivalent matrix of the identity matrix with all its 

elements as unity and its 2X2 lower right  sub-matrix is B(x)
-1

 where x= [1 1]
T
. 

In terms of computational cost, this factorization is just arranging a given triangular Toeplitz 

matrix as a product of factors typically illustrated in (3.5) which is also a recurrence relation. The 

factors consist of a diagonal matrix, a matrix with only diagonal elements and a column, a triangular 

matrix with all elements unity and another triangular matrix where the lower right block is a 

triangular Toeplitz matrix of dimension one less than the previous triangular Toeplitz matrix and its 

left upper block consists of the columns and rows of the identity matrix. Since this pattern is 

repeated, there is no computational procedures are involved in the factorization. When it comes to 

inverting the given matrix, the factors are to be inverted and multiplied. Since most of these factors 

are almost diagonal matrices and matrices with upper left block consisting of columns and rows of 

the identity matrix, it requires only O(n
2
) flops.   

V. CONCLUSION 

It can be generalized the aspects discussed in the previous section about the triangular 

Toeplitz factorization by analogy to higher dimension. The activities are identical in the total of the 

n-1 steps, except the n-1
th

 one. It is a recurrence relation existing among the triangular Toeplitz 

matrices, which is established by this factorization that made it possible to repeat the process where 

only the dimensional changes are to be taken care of. As a result the outcome Kj can be generated at 

j
th

 step from Kj-1 by repeating similar activities for j=1,2,…,n-2. In short, the total framework is valid 

for a triangular Toeplitz matrix of dimension n. This factorization can be thus applied to invert the 

given n x n triangular Toeplitz matrix in a direct and simple way. Because of the general Cholesky 

decomposition, the result can be easily extended to a given symmetric n x n Toeplitz matrix. 
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