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Abstract: The two parameter Burr type X distribution is considered. The well-known classical method 

– maximum likelihood (ML) estimation of both the parameters is from complete sample attempted. 

Two modifications to overcome the iterative estimation of the scale parameter are suggested. The 

suggested methods are found to be efficient. A censored sample is considered and a method of filling 

its missing observations is suggested in order to a Pseudo Complete Sample (PCS). The proposed 

modified maximum likelihood methods are applied to PCS/True Complete Sample (TCS) in an 

illustration. The estimate from PCS/TCS are found to differ little indicating admissibility of suggested 

PCS method. 
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I. INTRODUCTION 

The natural phenomenon in reliability studies is “The aging concept” – indicated by increasing 

instantaneous failure probability with age of the product. A specific case of Weibull distribution 

exhibiting aging effect with an integer valued shape parameter is known as “The Rayleigh 

distribution”. Its cumulative distribution function (CDF), probability density function (PDF) and 

hazard function are given by 

𝐹(𝑥) = 1 − 𝑒−𝑥2
  …….. (1.1) 

𝑓(𝑥) = 2𝑥𝑒−𝑥2
   ………. (1.2) 

ℎ(𝑥) = 2𝑥        ………… (1.3) 

If, F(x) is the cumulative distribution function of a positive valued random variable, 

then[𝐹(𝑥)]𝑘, k>0 also satisfies all the requirements for the cumulative distribution function of another 

positive valued random variable. If k is an integer, it can be interpreted as the failure probability of a 

parallel system of k- components whose life times are independently and identically distributed 

random variables, each with a common CDF – F(x). Exploring this concept to non-integer values of k 

also, many researchers in the recent past made extensive studies on models of the type  [𝐹(𝑥)]𝑘 

generated by a baseline model F(x). Such new models are named as exponentiated models by some 

authors and generalized models by some authors. For instance if the F(x) is exponential,  [𝐹(𝑥)]𝑘 is 

named as generalised exponential [2], if F(x) is Weibull,  [𝐹(𝑥)]𝑘 is named as exponentiated Weibull 

[5]. Banking on this notion, generalized Rayleigh distribution was studied by [6], as a process of revisit 

to Burr type X distribution. Its cumulative distribution function (CDF), probability density function 

(PDF) and hazard function are given by 

𝐹(𝑥; 𝑘) = (1 − 𝑒−𝑥2
)𝑘; x>0, k>0 ………….. (1.4) 
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𝑓(𝑥; 𝑘) = 2𝑘𝑥𝑒−𝑥2
(1 − 𝑒−𝑥2

)𝑘−1;   x>0, k>0   ……………… (1.5) 

ℎ(𝑥; 𝑘) =
2𝑘𝑥𝑒−𝑥2

(1−𝑒−𝑥2
)(𝑘−1)

1−(1−𝑒−𝑥2
)𝑘

        …………………………….. (1.6) 

Burr [1] has suggested a number of forms of cumulative distribution functions that might be 

useful in modeling various practical situations. In all, he suggested twelve models as listed below. 

(I)  𝐹(𝑥) = 𝑥 ;   0 < 𝑥 < 1, 
(II)  𝐹(𝑥) = (𝑒−𝑥 + 1)−𝑘, 
(III)  𝐹(𝑥) = (𝑥−𝑐 + 1)−𝑘;   0 < 𝑥 < ∞, 

(IV)  𝐹(𝑥) = [(
𝑐−𝑥

𝑥
)

1 𝑐⁄

+ 1]
−𝑘

;    0 < 𝑥 < 𝑐, 

(V)  𝐹(𝑥) = (𝑐𝑒− tan 𝑥 + 1)−𝑘;   − 
𝜋

2
< 𝑥 <

𝜋

2
,  

(VI)  𝐹(𝑥) = (𝑐𝑒−𝑘 sinh 𝑥 + 1)
−𝑘

,                                                                                          (1.7) 

(VII)  𝐹(𝑥) = 2−𝑘(1 + tanh 𝑥)𝑘,  

(VIII)  𝐹(𝑥) = (
2

𝜋
 𝑎𝑟𝑐 tan 𝑒𝑥)

𝑘

,  

(IX)  𝐹(𝑥) = 1 −
2

𝑐[(1+𝑒𝑥)𝑘−1]+2
, 

(X)  𝑭(𝒙) = (𝟏 − 𝒆−𝒙𝟐
)

𝒌
; 𝟎 < 𝒙 < ∞, 

(XI)  𝐹(𝑥) = (𝑥 −
1

2𝜋
sin 2𝜋𝑥)

𝑘

;   0 < 𝑥 < 1, 

(XII)  𝐹(𝑥) = 1 − (1 + 𝑥𝑐)−𝑘; 0 < 𝑥 < ∞. 

Thus generalized Rayleigh distribution and Burr type X distributions are one and the same. 

In the above models k and c are the positive parameters involved in the respective models. The 

first model is the well-known uniform distribution also included by Burr [1]. Among these twelve 

forms, the type X and type XII models are most frequently applied by many researchers. Our focus is 

Burr Type X model, whose expressions are given in equations (1.4), (1.5), and (1.6). If a scale 

parameter say λ is introduced, the cumulative distribution function, probability density function and 

hazard function are respectively given by  

𝐹(𝑥; 𝑘, 𝜆) = (1 − 𝑒−(𝜆𝑥)2
)

𝑘
;   𝑥 > 0, 𝑘 > 0, 𝜆 > 0,   ………………………….. (1.8) 

𝑓(𝑥; 𝑘, 𝜆) = 2𝑘𝜆2𝑥𝑒−(𝜆𝑥)2
(1 − 𝑒−(𝜆𝑥)2

)
(𝑘−1)

; 𝑥 > 0, 𝑘 > 0, 𝜆 > 0, ………… (1.9) 

ℎ(𝑥; 𝑘, 𝜆) =
2𝑘𝜆2𝑥𝑒−(𝜆𝑥)2

(1−𝑒−(𝜆𝑥)2
)(𝑘−1)

1−(1−𝑒−(𝜆𝑥)2
)

𝑘 .    ………………………………..…… (1.10) 

Expressions in (1.4), (1.5) and (1.6) are called standard Burr type X model, those in equations 

(1.8), (1.9) and (1.10) are called scaled Burr type X or Two parameter Burr type X model. 

In this paper we attempt to present how a failure censored sample can be converted into a 

complete sample with the help of estimates of the missing observations using the uncensored 

observations. Thus we have a complete sample wherein the missing observations of a censored sample 

are filled with their estimates using uncensored observations. Such a sample is called a Pseudo 

Complete Sample (PCS) [7] and the references therein are some of the works in this direction. In 

Section – II we study the need for modifications to log likelihood equations to estimate the scale 

parameter for a known shape parameter and suggest two admissible methods that would lead to 

modified maximum likelihood estimates for complete samples. We describe a method of pseudo 
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completion of a given censored sample in Section – III and use such a Pseudo Complete Sample to get 

the modified maximum likelihood estimation. 

II. MODIFIED MAXIMUM LIKELIHOOD ESTIMATION FROM COMPLETE 

SAMPLES 

 The probability density function of the two parameter Burr type X distribution is given by  

𝑓(𝑥; 𝑘, 𝜆) = 2𝑘𝜆2𝑥𝑒−(𝜆𝑥)2
(1 − 𝑒−(𝜆𝑥)2

)
(𝑘−1)

; 𝑥 > 0, 𝑘 > 0, 𝜆 > 0                                               (2.1) 

 Its log likelihood equations to get the maximum likelihood estimates of λ and k from a complete 

sample are given by (after simplification). 

𝜕𝑙𝑜𝑔𝐿

𝜕𝜆
= 0 ⇒

2𝑛

𝜆
− 2𝜆 ∑ 𝑥𝑖

2 + 2𝜆(𝑘 − 1) ∑
𝑥𝑖

2𝑒−(𝜆𝑥𝑖)2

1−𝑒−(𝜆𝑥𝑖)2 = 0𝑛
𝑖=1

𝑛
𝑖=1                                                        (2.2) 

𝜕𝑙𝑜𝑔𝐿

𝜕𝑘
= 0 ⇒

𝑛

𝑘
+ ∑ ln(1 − 𝑒−(𝜆𝑥𝑖)2

) = 0𝑛
𝑖=1                                                                                     (2.3) 

The maximum likelihood estimator of k is a closed form expression involving λ given as  

�̂� =
−𝑛

∑ ln(1−𝑒−(𝜆𝑥𝑖)
2

)𝑛
𝑖=1

                                                                                                                        (2.4) 

The maximum likelihood estimator of λ is an iterative solution of the equation (2.2) involving 

k.  In order to overcome the iterative nature of the solution we proceed as follows. Equation (2.2) can 

be rewritten as  

2𝑛 − 2 ∑ 𝑧𝑖
2 + 2(𝑘 − 1) ∑

𝑧𝑖
2𝑒−𝑧𝑖

2

1−𝑒−𝑧𝑖
2 = 0𝑛

𝑖=1
𝑛
𝑖=1 ,                                                                                   (2.5) 

where 𝑧𝑖 = 𝜆𝑥𝑖.  

Consider the expression 𝑔(𝑧𝑖) =
𝑧𝑖

2𝑒−𝑧𝑖
2

1−𝑒−𝑧𝑖
2                                                                                           (2.6) 

of equation (2.5). 

We approximate this expression by a linear one in 𝑧𝑖 in a small neighborhood of the 𝑖𝑡ℎ quantile of the 

population say  

𝑔(𝑧𝑖) ≅ 𝛼𝑖 + 𝛽𝑖𝑧𝑖.                                                                                                                            (2.7) 

With this approximation equation (2.5) becomes a quadratic equation in λ given by  

𝐴𝜆2 + 𝐵𝜆 + 𝐶 = 0.                                                                                                                           (2.8) 

Where,  𝐴 = ∑ 𝑧𝑖
2, 𝐵 = −(𝑘 − 1) ∑ 𝛽𝑖𝑧𝑖,   𝐶 = −𝑛 − (𝑘 − 1) ∑ 𝛼𝑖

𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1 .  

Positive root of this equation is an estimate of λ called the modified maximum likelihood 

estimate (MMLE) of λ. It can be seen that A,B,C depend on the ordered observations x1,x2,…,xn, the 

shape parameter k and the slope, intercept of the linear approximation (2.7). In order to find 𝛼𝑖, 𝛽𝑖 ,we 

suggest two methods of [3]. 

Method-I: 

Let 𝑝𝑖 =
𝑖

𝑛+1
, 𝑖 = 1,2, . . 𝑛.  

Let 𝑧𝑖
∗, 𝑧𝑖

∗∗ be the solutions of the following equations 

𝐹(𝑧𝑖
∗) = 𝑝𝑖

∗, 𝐹(𝑧𝑖
∗∗) = 𝑝𝑖

∗∗, 

Where 𝑝𝑖
∗ = 𝑝𝑖 − √

𝑝𝑖𝑞𝑖

𝑛
, 𝑝𝑖

∗∗ = 𝑝𝑖 + √
𝑝𝑖𝑞𝑖

𝑛
, F (.) is the cdf of standard Burr type X distribution, and 

𝑞𝑖 = 1 − 𝑝𝑖.  
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The expressions for 𝑧𝑖
∗, 𝑧𝑖

∗∗ are 

𝑧𝑖
∗ = √−𝐿𝑛 [1 − (𝑝𝑖 − √

𝑝𝑖𝑞𝑖

𝑛
 )

𝑘

]  ,                     
                                                                             (2.9) 

𝑧𝑖
∗∗ = √−𝐿𝑛 [1 − (𝑝𝑖 + √

𝑝𝑖𝑞𝑖

𝑛
 )

𝑘

]                                                                                                  (2.10)
 

The slope 𝛽𝑖 and intercept 𝛼𝑖 of the linear approximation in the equation (2.7) are given by 

𝛽𝑖 =
𝑔(𝑍𝑖

∗∗)−𝑔(𝑍𝑖
∗)

𝑍𝑖
∗∗−𝑍𝑖

∗ ,                                                                                                                             (2.11) 

𝛼𝑖 = 𝑔(𝑧𝑖
∗) − 𝛽𝑖𝑧𝑖

∗.                                                                                                                         (2.12) 

Method-II: 

 Considering Taylor’s expansion of 𝑔(𝑧𝑖) upto its first derivative w.r.t zi in a neighborhood of 

population quantile corresponding to pi, we get  

𝛽𝑖 = 𝑔′(𝜉𝑖),                                                                                                                                  (2.13) 

𝛼𝑖 = 𝑔(𝜉𝑖) − 𝛽𝑖𝜉𝑖,                                                                                                                          (2.14) 

Where 𝜉𝑖 is the quantile of Burr type X distribution, given as the solution of the equation? 𝐹(𝜉𝑖) = 𝑝𝑖.  

i.e.,   𝜉𝑖 = √−𝐿𝑛 [1 − (𝑝𝑖 − √
𝑝𝑖𝑞𝑖

𝑛
 )

𝑘

]    .                                                                                      (2.15) 

It can be seen from (2.6) that  

𝑔′(𝜉𝑖) =
2𝜉𝑖𝑒−𝜉𝑖

2
(1−𝜉𝑖−𝑒−𝜉𝑖

2
+𝜉𝑖𝑒−𝜉𝑖

2
−𝜉𝑖

2𝑒−𝜉𝑖
2

)

(1−𝑒−𝜉𝑖
2

)2
                                                                                       (2.16) 

Substituting (2.15) in (2.16) we get   

𝛽𝑖 = 𝑔′(𝜉𝑖) =
2𝜉𝑖𝑒−𝜉𝑖

2
(1−𝜉𝑖−𝑒−𝜉𝑖

2
+𝜉𝑖𝑒−𝜉𝑖

2
−𝜉𝑖

2𝑒−𝜉𝑖
2

)

(1−𝑒−𝜉𝑖
2

)2
                                                                              (2.17) 

Using 𝛽𝑖 in (2.14) we get𝛼𝑖.  

In the above two modified methods, the basic principle is that certain expressions in the log 

likelihood equation are linearised in a neighborhood of the population quantile which depends on the 

size of the sample also. The larger the size, the narrower is the neighborhood and hence the closer is 

the approximation. That is, the exactness of the approximation becomes finer and finer for large values 

of ‘n’. Hence the approximate log likelihood equation and the exact log likelihood equation tend to 

each other as n. Hence the exact and modified MLEs are asymptotically identical (Tiku et al. [8]). 

The same may not be true in small samples and these are to be assessed with the help of small sample 

characteristics of the MMLEs. 

III. PSEUDO COMPLETION OF A CENSORED SAMPLE  

Let x1<x2< … <xn-1 be a censored sample of a planned sample of size n in which the last 

observation is missing. If 𝜉𝑖  is the 𝑖𝑡ℎ  quantile in a standard population we make use of a pivotal 

equation as𝜆𝑥𝑖 ≅ 𝜉𝑖. Let ∆1, ∆2, … , ∆𝑛−2 are the successive differences obtained from𝑥1, 𝑥2, … , 𝑥𝑛−1.  

i.e.,∆𝑖= 𝑥𝑖 − 𝑥𝑖−1, i=2,3, …, (n-1). 

Let ∆̅=
∑ ∆𝑖

𝑛−1
𝑖=2

𝑛−2
    and   𝜉̅ =

∑ 𝜉𝑖
𝑛
𝑖=1

𝑛
 . 
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In the first iteration the missing observation 𝑥𝑛 is estimated as 

 �̂�𝑛(1) = 𝑥𝑛−1 + ∆̅                                                                                                                             (3.1) 

First Pseudo Complete sample is𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛−1, �̂�𝑛(1). 

Let �̅�(1) =
∑ 𝑥𝑖

𝑛−1
𝑖=1 +�̂�𝑛(1)

𝑛
                                                                                                                      (3.2) 

�̂�(1) =
�̅�

�̅�(1)
                                                                                                                                          (3.3) 

The second iterative estimate of 𝑥𝑛 is given by �̂�𝑛(2) =
𝜉𝑛

�̂�(1)
                                                            (3.4) 

Second Pseudo Complete Sample is𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛−1, �̂�𝑛(2). 

where �̂�𝑛(2) is in (3.4). 

Let �̅�(2) =
∑ 𝑥𝑖+�̂�𝑛(2)

𝑛−1
𝑖=1

𝑛
                                                                                                                      (3.5) 

Let �̂�(2) =
�̅�

�̅�(2)
                                                                                                                                   (3.6) 

Third iterative value of 𝑥(𝑛) is given by   �̂�𝑛(3) =
𝜉𝑛

�̂�(2)
                                                                      (3.7)  

This procedure is to be repeated till at any 𝑗𝑡ℎ iteration 

 |�̂�𝑛(𝑗) − �̂�𝑛(𝑗+1)| < 0.01                                                                                                                  (3.8) 

As soon as this convergence is achieved, the ultimate Pseudo Complete Sample is considered 

for general inferential purposes. 

As a matter of illustration we consider the following example of a live sample of size 23 from 

[4]:: 17.88, 28.92, 33, 41.52, 42.12, 45.6, 48.8, 51.84, 51.96, 54.12, 55.56, 67.8, 68.64, 68.64, 68.88, 

84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 174.4. These observations represent the number 

of million revolutions before failing of ball-bearings in a life test. From this we regard the following 

four sets of ordered observations as true complete samples of sizes 5,10,15,20 respectively.   

Set-1: n=5;   17.88, 28.92, 33, 41.52, 42.12 

Set-2: n=10; 17.88, 28.92, 33, 41.52, 42.12, 45.6, 48.8, 51.84, 51.96, 54.12 

Set-3: n=15; 17.88, 28.92, 33, 41.52, 42.12, 45.6, 48.8, 51.84, 51.96, 54.12, 55.56,   

                    67.8, 68.64, 68.64, 68.88 

Set-4: n=20; 17.88, 28.92, 33, 41.52, 42.12, 45.6, 48.8, 51.84, 51.96, 54.12, 55.56,  

                    67.8, 68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84 

Assuming that these observations follow Burr type X distribution, we treat the highest ordered 

observation of each of the above four samples to be missing and estimate the same as described earlier. 

The Pseudo Complete Sample so obtained is made use of to get the MMLE of λ from the Pseudo 

Complete Sample as well as the true complete sample by methods – I and – II of Section - II. The 

results of Pseudo Complete Sample are presented in Tables 1 to 4 for n=5(5)20 respectively along with 

the estimated standard errors shown in the parentheses. 
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Table 1: Pseudo Completion of a Sample with Estimate of Largest Missing Observation (n=5) 
 

n 

 

k 

 

5

^

x  

Pseudo Complete Sample (PCS) True Complete Sample 

(TCS) 

Estimates of λ based on 

PCS TCS 

MMLE-I MMLE-II MMLE-I MMLE-II 

5 1.50 49.51161 17.88,28.92,33,41.52,49.51161 17.88, 

28.92, 

33, 

41.52, 

42.12 

0.03141 

(0.006641) 

0.030421 

(0.006106) 

0.033164 

(0.007012) 

0.031974 

(0.006417) 

2.00 46.65493 17.88,28.92,33,41.52,46.65493 0.034713 

(0.00654) 

0.031423 

(0.005303) 

0.03585 

(0.006754) 

0.032296 

(0.00545) 

2.50 44.88519 17.88,28.92,33,41.52,44.88519 0.037258 

(0.006105) 

0.031119 

(0.004309) 

0.037977 

(0.006223) 

0.031601 

(0.004376) 

3.00 43.65793 17.88,28.92,33,41.52,43.65793 0.039324 

(0.005991) 

0.030265 

(0.003542) 

0.039734 

(0.006053) 

0.030509 

(0.003571) 

Table 2: Pseudo Completion of a Sample with Estimate of Largest Missing Observation (n=10) 
 

n 

 

𝒌 

 

10

^

x  

Pseudo Complete Sample (PCS) True Complete 

Sample (TCS) 

Estimates of λ based on 

PCS TCS 

MMLE-I MMLE-II MMLE-I MMLE-II 

10 1.50 70.51067 17.88,28.92,33,41.52,42.12,45.6,48.8,51.84,51.96,70.51067 17.88, 

28.92, 

33, 41.52, 

42.12,45.6, 

48.8, 51.84, 

51.96, 

54.12 

0.024504 

(0.003507) 

0.023634 

(0.003198) 

0.026103 

(0.003736) 

0.025042 

(0.003389) 

2.00 66.22923 17.88,28.92,33,41.52,42.12,45.6,48.8,51.84,51.96,66.22923 0.026864 

(0.0034) 

0.024231 

(0.002686) 

0.028189 

(0.003568) 

0.025247 

(0.002799) 

2.50 63.54704 17.88,28.92,33,41.52,42.12,45.6,48.8,51.84,51.96,63.54704 0.028694 

(0.003184) 

0.023944 

(0.002268) 

0.02984 

(0.003311) 

0.024718 

(0.002342) 

3.00 61.67855 17.88,28.92,33,41.52,42.12,45.6,48.8,51.84,51.96, 61.67855 0.03019 

(0.003085) 

0.023293 

(0.001874) 

0.031208 

(0.003189) 

0.023912 

(0.001923) 

../../www.ijaera.org


International Journal of Advanced Engineering Research and Applications  

(IJAERA) 

Vol. – 1, Issue – 5 

September - 2015 

 

www.ijaera.org 2015, IJAERA - All Rights Reserved 219 

 

Table 3: Pseudo Completion of a Sample with Estimate of Largest Missing Observation (n=15) 

 

n 

 

k 

 

15

^

x  
Pseudo Complete Sample (PCS) 

True Complete Sample 

(TCS) 

Estimates of λ based on 

PCS TCS 

MMLE-I MMLE-II MMLE-I MMLE-II 

15 

1.50 88.36869 

17.88,28.92,33,41.52,42.12,45.6,48.8,5

1.84,51.96,54.12,55.56,67.8,68.64,68.6

4,88.36869 

17.88, 

28.92, 

33, 41.52, 

42.12,45.6, 

48.8, 51.84, 

51.96, 

54.12, 55.56,67.8, 

68.64,68.64, 

68.88 

0.017347 

(0.002003) 

0.020191 

(0.002202) 

0.021681 

(0.002504) 

0.020837 

(0.002272) 

2.00 82.85789 

17.88,28.92,33,41.52,42.12,45.6,48.8,5

1.84,51.96,54.12,55.56,67.8,68.64,68.6

4,82.85789 

0.022904 

(0.002344) 

0.020684 

(0.001837) 

0.023441 

(0.002399) 

0.021082 

(0.001872) 

2.50 79.38872 

17.88,28.92,33,41.52,42.12,45.6,48.8,5

1.84,51.96,54.12,55.56,67.8,68.64,68.6

4,79.38872 

0.024434 

(0.002211) 

0.020456 

(0.001567) 

0.024841 

(0.002248) 

0.020711 

(0.001586) 

3.00 76.96624 

17.88,28.92,33,41.52,42.12,45.6,48.8,5

1.84,51.96,54.12,55.56,67.8,68.64,68.6

4,76.96624 

0.025692 

(0.00213) 

0.019926 

(0.001319) 

0.026006 

(0.002156) 

0.020095 

(0.00133) 

Table 4: Pseudo Completion of a Sample with Estimate of Largest Missing Observation (n=20) 
 

n 

 

k 

 

20

^

x  

Pseudo Complete Sample (PCS) True Complete Sample 

(TCS) 

Estimates of λ based on 

PCS TCS 

MMLE-I MMLE-II MMLE-I MMLE-II 

20 1.50 111.5974 17.88,28.92,33,41.52,42.12,45.6,48.8,51.84,51.96,5

4.12,55.56,67.8,68.64,68.64,68.88,84.12,93.12,98.6

4,105.12,111.5974 

17.88,28.92, 

33, 41.52, 

42.12,45.6, 

48.8, 51.84, 

51.96,54.12, 55.56,67.8, 

68.64,68.64,68.88,84.12,93

.12,98.64, 

105.12,105.84 

0.016915 

(0.001665) 

0.016408 

(0.001523) 

0.017028 

(0.001676) 

0.016509 

(0.001532) 

2.00 82.85789 17.88,28.92,33,41.52,42.12,45.6,48.8,51.84,51.96,5

4.12,55.56,67.8,68.64,68.64,68.88,84.12,93.12,98.6

4,105.12,82.8579 

0.018918 

(0.001716) 

0.017219 

(0.001341) 

0.018492 

(0.001678) 

0.016894 

(0.001316) 

2.50 100.039 17.88,28.92,33,41.52,42.12,45.6,48.8,51.84,51.96,5

4.12,55.56,67.8,68.64,68.64,68.88,84.12,93.12,98.6

4,105.12,100.039 

0.019787 

(0.001521) 

0.016824 

(0.001098) 

0.019671 

(0.001512) 

0.016748 

(0.001093) 

3.00 96.90877 17.88,28.92,33,41.52,42.12,45.6,48.8,51.84,51.96,5

4.12,55.56,67.8,68.64,68.64,68.88,84.12,93.12,98.6

4,105.12,96.90877 

0.020839 

(0.001476) 

0.01426 

(0.000802) 

0.02066 

(0.001463) 

0.014124 

(0.000794) 
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 We see from these tables that estimated standard error of an estimate from true complete sample 

and pseudo complete sample differ little indicating the possible admissibility of the pseudo completion 

procedure for censored sample, suggested in this paper. However, this is to be established in a general 

frame work as this remark is made out of a single live example only. 
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