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Abstract.  In approximation theory the celebrated Weirstrass, K. (1885)’s theorem heralded an 

intermittent interest in polynomial approximation. Bernstein polynomial approximation operator was 

very popular for quite some time. Many modifications were tried by altering the weight-function 

therein, including some with probabilistic perspective it had. Some iterative algorithms have also 

been tried. In this paper one such algorithm, using the ‘An Iterative Algorithmically Modified Use of 

Bernstein's Polynomial Operator for an Optimally-Close Polynomial Approximation Using 

Computational Intelligence’ has been proposed and studied. The paper includes an ‘Empirical 

Simulation Study’ to bring forth the extent of ‘Relative Gain in Efficiency’ in approximation at each 

iteration, relative to the original and the proposed ‘Iterative’ ‘Polynomial Approximation Operator 

Algorithm’ using ‘Bernstein Polynomial’ developed & studied for some example-functions “(5)x, 

exp (x), ln(2+x) & sin (2+x) ” with a high ‘Replication’ of ’55,555’. Maple 17 has been used in this 

simulation study. 

Keywords: Polynomial Approximation, Bias, Mean-Squared-Error, Empirical Simulation Study & 

Replication 

I. INTRODUCTION & PROPOSITIONS 

Lot of problems in Science & Engineering could, essentially, be formulated as optimizing and 

approximation {[6], [8], [10], [12], [14], [16], [17] & [18}}. One would good to peruse [4] & [5], in 

this context. The celebrated Weirstrass, K. (1885)’s {[32]} theorem proved that any continuous 

function could be approximated by a suitable-degree polynomial, as closely as one is pleased with. 

Polynomial functions are, of course, extremely well-behaved.  One of the proofs {[1], [2]} was based 

on the popular ‘Bernstein Polynomial’: 

Bn (f; x) =




nk

k k nkfxw
0

)/().( ; wk(x) =   )()1.(. knk

k

n xxC  ; k=0 (1) n being the weight-function, 

WHERE ‘f (.)’ is a bounded continuous function in C [0, 1], and “f (k/n)”, k=0 (1) n are known 

values of ‘f(x)’ at “n+1” equidistant ‘Knots’.                    (1.1) 

The ‘Weirstrass, K. (1885)’s theorem’ & its proof using ‘‘Bernstein Polynomial’ was seminal to a lot 

of active and intermittent interest in ‘polynomial approximation’ and in ‘Bernstein Polynomial’, in 

particular {[3], [7], [9], [11], [13], [15], [18], [19], [20], [21], [22], [23], [24], [26], [27], [28], [29], 

[30] & [31]}. This paper, also, concerns with the “Bernstein’s Polynomial Approximation Operator”. 

Incidentally, weight function ‘wk(x)’ in the “Bernstein’s Polynomial Approximation Operator”, as in 

(1.1), has a ‘Probabilistic’ interpretation being the typical ‘Binomial Distribution Term’. Thus, ‘Bn 

(f; x)’ is nothing but E (f (x)) ~ ‘Mathematical Expectation’ of ‘f (x)’ ~ ‘x’ following the ‘Binomial 

Distribution’ ~ “weighted Average of the n +1 known values with respective weights ‘wk(x)’. 
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Without any loss of generality, [a, b] ~ [0, 1] under suitable transformation of the study-variable. We 

divide [0, 1] into ‘n’ equal intervals, using ‘n+1’equi-distant ‘knots’. Let xi = i/n for i = 0, 1... n. If 

the unknown function is called by ‘f(x)’, the ‘Bernstein’s Polynomial Approximation uses the values 

f (xi)’s [i = 1, 2… n] which are assumed to be known.  

Now, we propose our “Iterative Algorithmically modified Bernstein's Polynomial Operators, using 

the ‘Computational Intelligence’”. Let us denote the ‘Original/Usual Bernstein Polynomial’ in (1.1) 

at our Iteration ‘Zero’”, i.e. say, Bn [0] (f; x) ≡ Bn (f; x) as “UBn=2 [0] (f; x) & UBn=3 [0] (f; x), 

respectively, for n = 2 & n = 3.  

Our propositions of the “Iterative [‘I’ standing for the iteration # in the]-Algorithmically modified 

Bernstein's Polynomial, say IMBn=2ωn=3[I] (f; x) ‘using UBn=2 [0] (f; x) & UBn=3 [0] (f; x)’, and the 

‘Computational Intelligence’”, are then simply as follows. 

UBn=2 [0] (f; x) & UBn=3 [0] (f; x) are, respectively, ‘Bn (f; x)’ [As in (1.1)] for n = 2 & n = 3    (1.2) 

IMBn=2ωn=3[1] (f; x) = (1+c)* UBn=3 [0] (f; x) – c* UBn=2 [0] (f; x)                                  (1.3) 

IMBn=2ωn=3[2] (f; x) = (1+c)* IMBn=2ωn=3[1] (f; x) – c* UBn=3 [0] (f; x)                                 (1.4) 

& IMBn=2ωn=3[3] (f; x) = (1+c)* IMBn=2ωn=3[2] (f; x) – c* IMBn=2ωn=3[1] (f; x)                     (1.5) 

Herein, ‘c’ is the design-parameter of the proposed “Iteration-Algorithm”, the optimal-value say ‘c0’, 

is determined to be “0.813”, using ‘Computational Intelligence’ per an extensive “Simulation-

Study”! 

II. THE EMPIRICAL SIMULATION STUDY 

To illustrate the gain in efficiency of the ‘IMBn=2ωn=3[I] (f; x); I=1,2 &3’’, and subsequently by using 

the operator IMBn=2ωn=3[2] (f; x), after each ‘Iteration” of our proposed Iterative Algorithmic 

Improvement of Polynomial Approximation by our proposed ““Iterative Algorithmically modified 

Bernstein's Polynomial Operators, using the ‘Computational Intelligence’”, we have carried out an 

empirical study.  

We have taken the cases of n = 2, 3, 4 and 5 (i.e. n + 1 = 3, 4, 5 and 6 knots) in the empirical study 

to numerically illustrate the relative gain in efficiency in using the Algorithm vis-`a-vis the Original 

‘MMSE Bn [0] (f; x)’ & ‘MMSE Bn [I] (f; x); I ~ Iteration # = 1, 2, ….,  for each example-case of the 

n-values.  

Essentially, the empirical study is a simulation one in which inasmuch as we assume that the 

function to be approximated, namely f (x), is known to us. We have confined ourselves to illustrating 

relative gain in efficiency by Iterative Improvement for the following four functions: 

f (x) = 5x, exp (x), ln (2 + x) &, sin (2 + x) 

To illustrate the potential improvement with our proposed Algorithm, with only THREE Iterations, 

the numerical values of the NINE quantities – Three Percentage Relative Errors (PREs) 

corresponding to Improvement Iteration (I ≡ 1, or 2, or 3 ) ~ PRE{IMBn=2ωn=3[I] (f; x)}, TWO for the 

Original ‘Bernstein Operator’ PRE {UBn [0] (f; x)} for n = 2 & n = 3, and the FOUR corresponding 

Percentage Relative Gains (PRGs) in using our Iterative Algorithmic ‘MMSE Bernstein Operators 

IMBn=2ωn=3[I] (f; x)’ in place of the Original ‘Bernstein Operator’ UBn=2 [0] (f; x), namely PRG{ 

IMBn=2ωn=3[I] (f; x)}; I = 1(1)3), and also by using ‘UBn=3 [0] (f; x)’, rather than ‘UBn=2 [0] (f; x)’ . 

These quantities are defined as follows. The PRE using (Original & Iterative) Bernstein (Polynomial) 

“•”, namely “{IMBn=2ωn=3[I] (f; x)}” and UBn=2 [0] (f; x) & UBn=3 [0] (f; x)” using n intervals in [0, 

1], i.e. [(k − 1)/n, k/n]; k = 1(1) n:  
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PRE {•} = {
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} x100%;           (2.1) 

The PRG by using the Improvement Iteration (I # 1, or 2, or 3) IMBn=2ωn=3[I] (f; x) & by using UBn=3 

[0] (f; x) over using the “Original” Bernstein (Polynomial) UBn=2 [0] (f; x), using n intervals in [0, 1], 

i.e. 

PRG {•} = = {
 x)}(f; [0]{UB PRE

)] PRE(-x)}(f; [0]{UB PRE[

2n

2n



 abs
} x100%; 

By using [I ≡ 1 (1) 3] IMBn=2ωn=3[I] (f; x) & by using UBn=3 [0] (f; x) over using the “Original” 

Bernstein (Polynomial) UBn=2 [0] (f; x).                 (2.2) 

III. CONCLUSION 

Thus, NINE numerical quantities have been computed using Maple Release 17, for all the four 

illustrative functions (5x, exp (x), ln (2 + x), sin (2 + x), and) mentioned in Section 2. These values 

are, respectively, tabulated in Table A. 1 [Appendix].  

The PREs for our ‘Iteratively Algorithmically Modified Bernstein Polynomial’ Approximators are 

PROGRESSIVELY lower on each subsequent iteration, as compared to that for the Original 

Bernstein Polynomial Approximator, for all the illustrative functions. The PRGs due to the use of our 

proposed ‘Iterative Algorithmic MMSE Bernstein Polynomial’ Approximators rather than that of the 

Original Bernstein Polynomial Approximator are also PROGRESSIVELY increasing on each 

subsequent iteration, for all the illustrative functions.  

Lastly, it is very heartening to note that when we use (n = 3) intervals, i.e. 4 KNOTS only for the 

polynomial approximation, the PRG becomes almost 100% for the third iteration, for all FOUR 

functions! Otherwise also, the speed of convergence is highly accelerated by the Iteratively 

Algorithmically improvement by proposed Modified Bernstein Polynomial using the ‘Computational 

Intelligence’. 

It could also be noted that this perspective of the Iterative Improvement could be applied to any 

Polynomial Approximator, other than Bernstein Polynomial; more particularly to those belonging to 

the class of Positive Linear Operators, as they admit to the Statistical perspective ‘MMSE’ rather 

more readily! 
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APPENDIX: 

Table A.1. Relative Efficiency/Gain (%) For Usual Bernstein &IMBernstein [I] Using “Computational 

Intelligence”. 

Items↓ n → 5x exp (x) ln (2+x) sin (2+x) 

PRE {UBn=2 [0] (f; x)} 10.46200038 4.115693005 0.754126955 4.219915264 

PRE {UBn=3 [0] (f; x)} 6.967203690 2.742579548 0.502544991 2.814637336 

PRE {IMBn=2ωn=3[1] (f; x)} 4.125933988 1.626238231 0.298008854 1.672146392 

PRE {IMBn=2ωn=3[2] (f; x)} 1.815981666 0.718652831 0.131720969   0.743301239 

PRE {IMBn=2ωn=3[3] (f; x)} 0.062009510 0.019214136 0.003471075   0.011849876 

PRG {UBn=3[0] (f; x)} 33.40466988 33.36287365 33.36069113   33.30109351 

PRG {IMBn=2ωn=3[1] (f; x)} 60.56266643 60.48689178 60.48293297   60.37488226 

PRG {IMBn=2ωn=3[2] (f; x)} 82.64211814 82.53871632 82.53331645   82.38587288 

PRG {IMBn=2ωn=3[3] (f; x)} 99.40728821 99.53314944 99.53972276   99.71919161 
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