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Abstract: In this paper, a prey predator impulsive mathematical model of integrated pest management 

is established, in which infected prey and predator (natural enemy) are released impulsively. By using 
the Floquet’s theory for impulsive differential equations, small-amplitude perturbation methods and 

comparison techniques, we investigate the local and global stability of the susceptible pest-eradication 
periodic solution. 
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I.  INTRODUCTION  

Mathematical modeling is a technique in which various natural processes and phenomena are 
converted into mathematical terms (expressions) and then studied for their solutions, and continually 
refined over a period of time to get more and more accurate and efficient results. During last few years 
mathematical modeling has played an important role in studying the biological, pharmaceutical and 
agricultural processes.  

From thousands of years, pest control in agriculture has been a major concern for farmers. People in 
different era used their own methodologies and technologies to control the pests which destroy the plants 
and ultimately reduce crop production. However with the passage of time, a number of pest control 
strategies are available to farmers such as physical control, biological control and chemical control and 
remote sensing.  

In biological control technique, the pests are controlled via manipulating the nature in which some 
organisms (predators or infected pests) are released, which consume or infect the pest population and 
ultimately improve the crop production. In chemical control, the pesticides are used to control the pests 
and are very effective as these can kill the pests rapidly but the extensive use of these pesticides are 
creating major health problems. So the time demands the use of more and more biological control to 
control the pests destroying crops. A number of authors studied the management of pest control using 
biological technique [1, 2, 8, 9, and 10]. 

Many evolution processes are characterized by the fact that at certain moments of time, they 
experience a change of state abruptly. The impulsive systems of differential equation are an adequate 
apparatus for the mathematical modeling of numerous processes and phenomena studied in biology, 
economics and technology etc. As in pest control strategies discussed above (chemical and biological), 
the pesticide, the infected pests or predators are released impulsively, so the pest management can be 
very efficiently studied through modeling by impulsive differential equations.  

The study of pest management using impulsive differential equations was started in 2005 due to Zhang 
et al [7]. They modeled the system as: 
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   𝑥 ′(𝑡) =  𝑥(𝑡)(1 −  𝑥(𝑡)) −
𝑎1x(t) y(t)

1+𝑏1x(t)
 

   𝑦′(𝑡) =  
𝑎1x(t) y(t)

1+𝑏1x(t)
−

𝑎2y(t)z(t)

1+𝑏2 y(t)
− 𝑑1y(t)             𝑡 ≠  𝑛𝑇 

   𝑧′(𝑡)  =  
𝑎2y(t)z(t)

1+𝑏2 y(t)
− 𝑑2z(t)  

   𝑥(𝑡+)  =  𝑥(𝑡) 
   𝑦(𝑡 +) = 𝑦(𝑡)                          𝑡 =  𝑛𝑇                                      

   𝑧(𝑡+)  =  𝑧(𝑡) + 𝑝 

where 𝑥(𝑡) ,  𝑦(𝑡)  and z(t) are the population density of prey, predator and top predator at time t 

respectively and p is the amount of the predator that is introduced into the population at periodic intervals 
of length T.  

The authors established the conditions for global asymptotic stability of pest extinction periodic solution 

(1,0, 𝑧̅)  as well as for the permanency of the system. They proved that periodic solution (1,0, z̃(t)) is 

locally asymptotically stable when T <
𝑎2𝑝(1+𝑏1)

𝑑2(𝑎1−𝑏1𝑑1−𝑑1 )
. and system is globally asymptotically stable.  

Shi and Chan [6] studied an impulsive prey predator model with disease in prey for purpose of integrated 
pest management. Here the authors derived a sufficient condition for the global stability of susceptible 

pest eradication periodic solution.  

The aim of this paper is to study a Holling II functional responses prey predator impulsive mathematical 

model of integrated pest management in which both infected prey and predator (natural enemy) are 
released impulsively. The local stability of pest extinction periodic solution is studied using Floquet 
theory and global stability of pest extinction periodic solution is studied by using comparison principle 

of impulsive differential equations. 
 

II. MATHEMATICAL MODEL 

Assumptions: 

A1 : Due to disease in pest population the total pest population is divided into two classes, 

susceptible pest population and infected pest population.  

A2 : The incidence rate among susceptible and infected pest population is Holling type II 

i.e., 
αS(t) Z(t)

1+xS(t)
 where α is the contact number per unit time of infected pest with 

susceptible pest. 

 
A3 : The predator attacks susceptible pests only and the predation functional response is 

again Holling type II i.e.,  
βS(t)I(t)

1+yS(t)
  where β  is the contact number per unit time of 

predator with susceptible pest. 
 

A4 : At time t = nT, n ∈ Z+ = {1,2,3, , … }  the infected pest and predator are released 

periodically with amount u and v respectively, u > 0, 𝑣 > 0. 

In this paper, we study the following model for integrated pest management 
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S ′ (t) = S(t)(1 − S(t)) −
αS(t) Z(t)

1+xS(t)
−

βS(t)I(t)

1+yS(t)
, 

I ′ (t) =
βS(t)I(t)

1 +yS(t)
− d1I(t), 

Z ′(t) =
αS(t) Z(t)

1+xS(t)
−d2Z(t), 

∆S(t) = 0, 

∆I(t) = u,  

∆Z(t) = v.                                                                       (1) 
 

Where  
S(t): Density of susceptible pest at time t. 

I(t): Density of infected pest at time t. 

Z(t): Density of predator (natural enemy) at time t. 

d1: Natural death rate of infected pest. 
d2: Natural death rate of predator (natural enemy). 

α : The contact number per unit time of predator with susceptible pest. 
β : The contact number per unit time of infected pest with susceptible pest. 

u : The amount of infected pest released periodically. 
v: The amount of predator released periodically. 

∆S(t) = S(t+) − S(t), 

∆I(t) = I(t+) − I(t), 

∆Z(t) = Z(t+) − Z(t). 

T is period of impulsive effect. 
 

III. PRELIMINARIES 

R+ =  [0,∞) and R+
3 =  {x = (x1, x2, x3 ) ∈ R+

3 : x1, x2, x3 > 0} . 

Let V: R+ × R+
3 → R+ . Then V is said to belong to class V0 if 

(i) V is continuous in (nT, (n + 1)T] × R+
3  and for each x ∈ R+

3 ,n ∈ Z+ = {1,2,3, , … }  and the 

lim
(t,y) →(nT+ ,x)

V(t,y) = V(nT+ , x) exists and is finite. 

(ii)       V is locally Lipschitzian in x. 
 
Definition 3.1 For V ∈ V0  and  (t, x) ∈ (nT, (n + 1)T] × R+

3 , the upper right Dini derivative of V(t, x) 

with respect to the impulsive differential system (1) is defined as 

D+ V(t, x) = lim
h→0+

sup
1

h
[V(t + h, x + hf(t,x)) − V(t, x)]. 

 
Definition 3.2 System (1) is said to be permanent if there exists a compact region D ∈ int R+

3  such that 

every solution of system (1) with positive initial values will eventually enter and remain in region D. 

The solution of system (1) denoted by X(t) = (S(t), I(t), Z(t)): R+ → R+
3  is continuously differentiable 

on (nT, (n + 1)T] × R+
3 ,n ∈ Z+ = {1,2,3, , … } and the limit X(nT+) =  lim

t→nT+
X(t) exists and is finite for 

n ∈ Z+ . The global existence and uniqueness of solution of system (1) is guaranteed by the smoothness 

properties similar as in [5]. Below we state some lemmas whose proofs are obvious. 

Lemma 3.1 Suppose that 𝑋(𝑡)  is a solution of (1) with X(0+) ≥ 0 for all t > 0. Further, if X(0+) > 0 
then 𝑋(𝑡) > 0 for all 𝑡 > 0. 

𝑡 ≠ 𝑛𝑇, 

𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑍+ = {1,2,3, , … }   
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Lemma 3.2 [5] Let V: R+ × R+
3 → R and V ∈ V0. Assume that 

D+V(t,x) ≤ g(t, V(t, x)),             t ≠ nT, 

V(t, X(t+)) ≤ ψ
n

V(t, X(t)), t = nT, 

where g: R+ × R+ → R is continous in (nT, (n + 1)T] × R+ and for each v ∈ R+
3 ,n ∈ Z+ 

lim
(t,y) →(nT+ ,v)

g(t, y) = g(nT+ , v) 

exists and is finite. Let ψ
n

: R+ → R+  is non-decreasing and R(t) be the maximal solution of the scalar 

impulsive differential equation 

                              u′ (t) =  g(t,u), t ≠ nT, 
                              u(t+) = ψ

n
(u(t)), t = nT, 

                               u(0+) = u0,  

defined on [0, ∞). Then V(0+ , x0 ) ≤ u0  implies that V(t, x(t)) ≤ R(t), t ≥ 0, where x(t) is any solution 

of system (1). 

 
IV. BOUNDEDNESS 

 

In this section, we prove the boundedness of the system (1). 
 

Lemma 4.1 [5] Let the function m ∈ PC ′ [R+ ,R]  and m(t) be left-continuous at 𝑡𝑘 , 𝑘 =
1,2,3, … … …satisfy the inequalities 

m′ (t) ≤ p(t)m(t) + q(t), t ≥ t0 , t ≠ tk,    
m(tk

′ ) ≤ dkm(tk) + bk, t = tk , k = 1,2,3, …           (2)

     

where p, q ∈ PC ′ [R+ ,R] and  dk ≥ 0, bk are constants, then 

 

m(t)      ≤  m(t0) ∏ dk exp (∫ p(s)ds
t

t0
) + ∑ (∏ djexp (∫ p(s)ds

t

t0
)t0<tj<𝑡 )t0<tk <𝑡 bk +t0<tk <𝑡

                 ∫ ∏ dkexp (∫ p(σ)dσ  q(s)t

s
ds)s<tk <𝑡

t

t0
,   t ≥ t0.      (3) 

 

If all the directions of inequalities in (2) are reversed, the inequality (3) also holds true for the reversed 
inequality. 

 

Theorem 4.2 There exist a positive constant L such that S(t) ≤ L, I(t) ≤ L ,Z(t) ≤ L, for each solution 

(S(t), I(t), Z(t)) of system (1) with positive initial values, where t is large enough.  

Proof. Define a function V such that 

V(t) = S(t) + I(t) + Z(t). 
Then for t ≠ nT, 

  D+V(t) + dV(t) = S ′ (t) + I ′(t) + Z ′(t) + d(S(t) + I(t) + Z(t)) 

Let 𝑑 = min{d1, d2}. 

We obtain  D+V(t) + dV(t) ≤ (1 + d)S(t) − S2(t) ≤ M0 , where M0 =
(1+d) 2

4
. 

When t = nT, V(t+) = V(t) + u + v.  
Using Lemma 4.1, we get  

V(t) = V(0)e−dt + ∫ M0

t

0

e−d(t−s)ds + ∑ (u + v)e−d(t−kT)

0<kT<𝑡

→
M0

d
+

(u+v)edT

edT−1
, as t → ∞. 

Consequently, by the definition of V(t) we obtain that each solution of (1) with positive initial values is 

uniformaly ultimately bounded. This completes the proof. 
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V.  STABILITY 
 

In this section, we study the stability of pest eradication periodic solution of system (1) using Floquet 

theory of impulsive differential equations. The condition for global attraction of pest eradication period 
is also established. 

Lemma 4.3. System 

                                                        u′(t) = −w u(t),   t ≠ nT, 
  ∆u(t) = μ,   t = nT.  (4) 

has a positive solution u∗(t),  for every solution u(t)  of this system with positive value u(0+), 

|u(t) − u∗(t)| → 0 as t → ∞, wher u∗(t) = μe−w(t−nT)

1 −e−wT  

u∗(0+) =
μ

1−e−wT . 

Proof. The proof is obvious, in fact, since the solution of (4) is 

u(t) = (u(0+) −
μ

1 − e−wT
) e−wT + u∗(t).    nT < 𝑡 ≤ (n + 1)T. 

When S(t) ≡ 0 for all t ≥ 0, we get the subsystem of system (1) 

 

 

I ′ (t) = −d1I(t),      t ≠ nT, 

Z ′(t) = −d2Z(t), 
∆𝐼(𝑡) = 𝑢,     𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑍+ = {1,2,3, , … }     (5) 

∆𝑍(𝑡) = 𝑣.    
In this system, we can see there is no relation between 𝐼(𝑡) and 𝑍(𝑡) . Thus, we can solve them 

independently. By Lemma 3.6, we get the following result. 

Theorem 4.3 System (5) has a unique positive periodic solution  

I∗(t) = ue−d1 (t−nT)

1−e−d1T
,  

Z∗(t) = ve−d2 (t−nT)

1−e−d2T
, for  nT < 𝑡 ≤ (n + 1)T. 

Where 

I∗(0+) = u

1−e−d1T 
 ,  

Z∗(0+) = v

1−e−d2 T
. 

In addition for every solution of the system (5) with initial values  𝐼(0+) > 0, 𝑍(0+) > 0, it follows that 

𝐼(𝑡) → 𝐼∗(𝑡),𝑍(𝑡) → 𝑍∗(𝑡),   as 𝑡 → ∞. 
Thus, the complete expression for the susceptible pest-eradication solution of system (1) is obtained 

as (0, I∗(t),Z∗(t)). 

Theorem 5.1 Let (S(t), I(t), Z(t))  be any solution of (1) (𝑖) The trivial solution (0,0,0) is unstable. 

(𝑖𝑖) If 𝑇 < (𝛼𝑣

𝑑2
+ 𝛽𝑢

𝑑1
), then the susceptible pest eradication periodic solution (0, 𝐼∗(𝑡), 𝑍∗(𝑡))  is locally 

asymptotically stable. 

Proof: (i) To prove the local stability of trivial solution (0,0,0) , we use small-amplitude perturbation 
method. Let 

 𝑆(𝑡) = 𝑝(𝑡), 
𝐼(𝑡) = 𝑞(𝑡), 
𝑍(𝑡) = 𝑟(𝑡), 

where p(t), q(t), r(t) are small perturbations. Then system (1) can be linearized by using Taylor 
expansions after neglecting higher-order terms as: 
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𝑝 ′(𝑡) = 𝑝(𝑡), 
𝑞 ′(𝑡) = −𝑑1𝐼∗(𝑡),           𝑡 ≠ 𝑛𝑇 

𝑟′ (𝑡) = −𝑑2 𝑍∗(𝑡), 
𝑝(𝑛𝑇+) = 𝑝(𝑛𝑇),           (6) 

𝑞(𝑛𝑇+) = 𝑞(𝑛𝑇),           𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑍+ = {1,2,3, , … } 

𝑟(𝑛𝑇 +) = 𝑟(𝑛𝑇), 
Let ∅(𝑡) be the fundamental solution matrix of (6). Then ∅(𝑡) satisfy 

𝑑∅(𝑡)

𝑑t
= (

1 0 0
0 −d1 0
0 0 −d2

) ∅(t), 

∅(0) = I3 is the identity matrix. Hence the fundamental solution matrix is 

 

 ∅(t) = (
eT 0 0
0 e−d1T 0
0 0 e−d2 T

) 

Also, the fourth, fifth and sixth equations in (6) read as 

(

p(nT+)

q(nT+)

r(nT+)

) =  (
1 0 0
0 1 0
0 0 1

) (
p(nT)

q(nT)

r(nT)
)  

𝑀 = (
1 0 0
0 1 0
0 0 1

) ∅(T). 

Therefore the eigen values of M are 

λ1 = e−d2T < 1,λ2 = e−d1T < 1,    λ3 = eT > 1.   
Since λ3 > 1, trivial solution  (0,0,0) is unstable.  
 

(ii) Now for local stability of periodic solution (0, 𝐼∗(𝑡), 𝑍∗ (𝑡)) , the small-amplitude perturbation 

implies 
 𝑆(𝑡) = 𝑝(𝑡), 
𝐼(𝑡) = 𝑞(𝑡) + 𝐼∗(𝑡), 
𝑍(𝑡) = 𝑟(𝑡) + 𝑍∗(𝑡), 

where p(t), q(t), r(t) are small perturbations. Then system (1) can be linearized by using taylor 

expansions and after neglecting higher-order terms we get 

            𝑝 ′(𝑡) = 𝑝(𝑡) − 𝛼 𝑝(𝑡)𝑍∗ (𝑡) − 𝛽𝑝(𝑡)𝐼∗(𝑡), 
           𝑞 ′(𝑡) = 𝛽𝑝(𝑡)𝐼∗(𝑡) − 𝑑1𝑞(𝑡) − 𝑑1𝐼∗(𝑡),          𝑡 ≠ 𝑛𝑇 

𝑟′ (𝑡) = 𝛼 𝑝(𝑡)𝑍∗ (𝑡) − 𝑑2 𝑟(𝑡) − 𝑑2𝑍 ∗(𝑡), 
𝑝(𝑛𝑇 +) = 𝑝(𝑛𝑇),                                                   (7)                

          𝑞(𝑛𝑇+) = 𝑞(𝑛𝑇),          𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑍+ = {1,2,3, , … } 

𝑟(𝑛𝑇+) = 𝑟(𝑛𝑇), 
Let ∅(𝑡) be the fundamental solution matrix of (7). Then ∅(𝑡) satisfy 

𝑑∅(𝑡)

𝑑t
= (

1 − α Z∗(t) − βI∗(t) 0 0

βI∗ (t) −d1 0

α Z∗(t) 0 −d2

) ∅(t), 

Where ∅(0) = I3 is the identity matrix. Hence the fundamental solution matrix is 
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 ∅(t) = (
e∫ [1−α Z∗(t)−βI∗(t)]dt

T
0 0 0

∗ e−d1T 0
∗ 0 e−d2T

) 

Also, the fourth, fifth and sixth equations in (4) read as 

(

p(nT+)

q(nT+)

r(nT+)

) =  (
1 0 0
0 1 0
0 0 1

) (
p(nT)

q(nT)

r(nT)
)  

Hence, if all eigen values of  

M=(
1 0 0
0 1 0
0 0 1

) ∅(T) 

have absolute values less than 1, then the periodic solution (0, I∗(t),Z∗(t))  is locally asymptotically 

stable. The eigen values of M are 

λ1 = e−d2T < 1,λ2 = e−d1T < 1,    λ3 = e∫ [1−α Z∗(t)−βI∗(t)]dt
T

0 .   

It follows that | λ3| < 1  if and only if T < (αv

d2
+ βu

d1
)  holds. Thus the Floquet theory of impulsive 

differential equations, in this situation, implies that the susceptible pest-eradication periodic solution 

(0, I∗(t),Z∗(t)) is locally asymptotically stable. The proof is complete. 
 

Theorem 5.2 If  T < (αv

d2
+ βu

d1
),  then the periodic solution (0, I∗ (t),Z∗(t))  is globally asymtotically 

stable for the system (1). 

Proof: By given condition and Theorem 5.1, it is easy to know that (0, I∗(t),Z∗(t))  is locally 

asymptotically stable. Therefore, we only need to prove its global attraction.  

Since T < (αv

d2
+ βu

d1
), we can choose a ϵ1small enough such that  

∫ [1 − α (Z∗(t) − ϵ1) − β(I∗(t) − ϵ1)]dt
T

0
= σ < 0. 

Besides, we have 

I ′ (t) =
βS(t)I(t)

1 + yS(t)
− d1I(t) ≥ −d1I(t). 

From Lemmas 3.2 and 4.3, there exists a n1 such that for  

𝐼(𝑡) ≥ I ′ (t) − ϵ1, for 𝑡 ≥ n1𝑇, 
Similarly, there exists a n2 (n2 > n1) such that 

𝑍(𝑡) ≥ Z∗(t) − ϵ1, for 𝑡 ≥ n2𝑇. 
Thus, for 𝑡 ≥ n2𝑇, we have 

S ′(t) = S(t)(1 − S(t)) −
αS(t) Z(t)

1 + xS(t)
−

βS(t)I(t)

1 + yS(t)
 

≤ S(t) −
αS(t) Z(t)

1 + xS(t)
−

βS(t)I(t)

1 + yS(t)
 

≤ S(t) (1 −
α(Z∗(t)−ϵ1 )

1 +xS(t)
−

β(I′(t)−ϵ1)

1+yS(t)
). 

From the above inequality, we get 

𝑆(𝑡) ≤ 𝑆(n2𝑇)𝑒
∫ [1−

α(Z∗(t)−ϵ1)

1+xS(t) −
β(I′(t)−ϵ1)

1+yS(t)
]dt

t
n2𝑇 ≤ 𝑆(n2𝑇)𝑒𝑘𝜎. 

Where  𝑡 ∈ ((n2 + k)𝑇,(n2 + k + 1)𝑇],𝑘 ∈ 𝑍+ . Since 𝜎 < 0, we can easily see that 𝑆(𝑡) → 0 as 𝑘 →

+∞. 

Thus for arbitrary positive constant ϵ2  small enough, there exist n3 (n3 > n2) such that  
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𝑆(𝑡) < ϵ2 for all 𝑡 ≥ n3𝑇. From which we get  

I ′ (t) = βS(t)I(t) − d1I(t) ≤ (βϵ2 − d1) I(t), 

From Lemmas 3.2 and 4.3, there exists a n4 (n4 > n3) such that 

𝐼(𝑡) ≤ I2
∗ (t) + ϵ1, for 𝑡 ≥ n4𝑇, 

where I2
∗(t) = ue−(d1−∝ϵ2)(t−kT)

1−e−(d1 −∝ϵ2)T
 , for 𝑡 ∈ (𝑘𝑇,(k + 1)𝑇],𝑘 ∈ 𝑍+. 

 
By similarly argument, there exists a n5 (n5 > n4)  such that 

𝑍(𝑡) ≤ Z2
∗(t) + ϵ1 , for 𝑡 ≥ n5𝑇, 

where Z2
∗(t) = ve−(d2−βϵ2)(t−kT)

1−e−(d2−βϵ2)T
 , for 𝑡 ∈ (𝑘𝑇,(k + 1)𝑇],𝑘 ∈ 𝑍+. 

 

Note that ϵ1, ϵ2  are positive constants small enough and I2
∗(t) → I∗(t) ,Z2

∗(t) → Z∗(t)  as 𝑡 → ∞. 

Therefore, the periodic solution (0, I∗(t),Z∗(t)) is globally asymtotically stable. 
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