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Abstract: The Burr type X distribution is considered as a base line model to get its inverse model. 
The distribution characteristics of the model along with its graphical shapes are presented. 

Maximum likelihood estimation of its parameters is derived and the results are illustrate with a 
live example. The fitness of the model to the data is also established. 
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I.  INTRODUCTION 

  If, X is a positive valued continuous random variable with cumulative distribution function 
(cdf) F(x) and probability density function (pdf) f(x) with their inherent parameters, then the 

distribution of the random variable 𝑌 =
1

𝑋
 is called the inverse distribution of the basic random 

variable. The cdf and pdf of the inverse distribution in terms of those of the baseline distribution 

𝐹(∙) are given by 

𝐺(∙) = 1 − 𝐹 (
1

𝑦
) ........................... (1.1) 

𝑔(∙) = 𝐺′(𝑦) =
𝑑

𝑑𝑦
[𝐺(𝑦)]. ............. (1.2) 

 If X follows exponential, then the distribution of Y is called inverse exponential, if X follows 

Rayleigh, then the distribution of Y is called Inverse Rayleigh, if X follows Gamma distribution 
then the distribution of Y is called Inverse Gamma distribution and so on.   

 Twelve types of families of distributions are suggested by Burr (1942). Among these 

twelve types of models, Burr type X distribution is a popular model. The inverse notion of Burr 
type X distribution is little known in the literature. We propose the inverse Burr type X distribution 

as a topic of study in this paper to the extent possible. The distributional characteristics and groups 
of inverse Burr type X distribution are presented in Section – 2. Maximum likelihood estimation 
and its illustration to a fitted live data are given in Section – 3. 

II. INVERSE BURR TYPE X DISTRIBUTION  

We know that a single parameter Burr type X distribution has the following density function and 

distribution function. 

𝑓(𝑥; 𝑘) = 2𝑘𝑥𝑒−𝑥2
(1 − 𝑒−𝑥2

)𝑘−1;   x>0, k>0 ... (2.1) 

𝐹(𝑥; 𝑘) = (1 − 𝑒−𝑥2
)𝑘; x>0, k>0. ................................. (2.2) 

If a new random variable Y is defined as 𝑌 =
1

𝑋
 where X follows a Burr type X distribution, then 

using equations (1.1) and (1.2) with (2.1) and (2.2)  the following are the basic distributional 

characteristics of the distribution of Y. 

Probability density function (pdf):  
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𝑔(𝑦) =
2𝑘 𝑒−1 𝑦2⁄

𝑦3 (1 − 𝑒−1 𝑦2⁄ )
(𝑘−1)

; 𝑘 > 0, 𝑦 > 0. ...................... (2.3) 

Cumulative distribution function (cdf): 

𝐺(𝑦) = 1 − (1 − 𝑒−1 𝑦2⁄ )
𝑘

.  .....................................................  (2.4) 

Reliability function:  

𝑅(𝑦) = (1 − 𝑒−1 𝑦2⁄ )
𝑘

. ............................................................  (2.5) 

Hazard function: 

ℎ(𝑦) =
2𝑘

𝑦3 (𝑒1 𝑦2⁄
−1)

. ................................................................ (2.6) 

Mean Residual Life (MRL): 

𝑀𝑅𝐿 = 𝑚(𝑡) =
2𝑘

(1−𝑒−1 𝑡2⁄ )
𝑘 ∫

(1−𝑒−1 𝑢2⁄ )
𝑘

𝑢2 (𝑒1 𝑢2⁄
−1)

∞

𝑡
𝑑𝑢 − 𝑡 ................ (2.7) 

Mean Waiting Time (MWT) (Felipe et al.2011): In a given time interval (0,t) if it is known that 
the failure occurred somewhere in this interval, the lapse of time from the instant of failure to t is 

known as inactive period. This lapse of time is a random variable.  The average value of this 
random variable is called Mean inactive time also usually called Mean Waiting Time. It is given 
by  

𝑀𝑊𝑇 = 𝑤(𝑡) = 𝑡 − ∫ 𝑢
𝑡

0

𝑓𝑇 (𝑢;𝑘)

𝐹𝑇 (𝑡;𝑘)
𝑑𝑢 ............................................. (2.8) 

𝑀𝑊𝑇 = 𝑤(𝑡) = 𝑡 − 2𝑘 ∫
𝑒−1 𝑢2⁄ (1−𝑒−1 𝑢2⁄ )

(𝑘−1)

𝑢2

𝑡

0
𝑑𝑢 ....................   (2.9) 

 The graphs of the frequency curves and hazard curves are given in the following figures 

for selected values of k.   If k=1 Burr type X distribution becomes the well-known Rayleigh 
distribution and hence G(y) becomes the cdf of Inverse Rayleigh distribution. Our interest is for 

values of k different from one. We have chosen the values of k as 
1

3
,

2

5
,

1

2
,

2

3
, 1.5,2,2.5,3. The graphs 

of hazard functions show that this distribution has the phenomenon of an inverted bath tub shape.  

Figure – 2.1 
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Figure – 2.2 

 

Figure – 2.3 

 

Figure – 2.4 
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Figure – 2.5 

 

Figure – 2.6 

 

Figure – 2.7 
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Figure – 2.8 

 

Figure – 2.9 

 

Figure – 2.10 
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Figure – 2.11 

 

Figure – 2.12 

 

Figure – 2.13 
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Figure – 2.14 

 

Figure – 2.15 

 

Figure – 2.16

Quantiles, Skewness and Kurtosis: 

 The 𝑝𝑡ℎ  quantile of inverse Burr type X distribution is given by the solution of the 

equation 𝐺(𝑦) = 𝑝 and is given by 
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𝑦 = √
−1

𝐿𝑛[1−(1−𝑝)1 𝑘⁄ ]
    ........................................................................................ (2.10) 

 Substituting 𝑝 =
1

4
,

1

2
,

3

4
   in succession we get the first quartile, median and third 

quartile. As these depend on the shape parameter k, for the chosen values of k these are as 

follows: 

Table 1: Quantiles 

Quartile  

       𝒌 

𝑸𝟏 

(0.25) 

Median(𝑸𝟐) 

(0.5) 

𝑸𝟑 

(0.75) 

1/3 1.350901 2.736581 7.968606 

2/5 1.22375 2.267301 5.61225 

½ 1.099845 1.864419 3.936321 

2/3 0.976622 1.513997 2.736581 

1.5 0.756854 1.00294 1.406374 

2.0 0.705327 0.902423 1.201122 

2.5 0.671281 0.839704 1.082023 

3.0 0.646566 0.795954 1.00294 

Bowley’s coefficient of skewness, Kelly’s coefficient of skewness and Moors’ coefficient of 
kurtosis (Moors’, 1998) are given by 

Bowley′s Coeffiecient of Skewness =
𝑄3−2𝑄2 +𝑄1

𝑄3−𝑄1
, ........................................... (2.11) 

Kelly′s Coefficient of Skewness =
𝑃90−2𝑃50 +𝑃10

𝑃90 −𝑃10
,  ............................................ (2.12) 

Moors′Coefficient of Kurtosis =
𝑄(7 8⁄ )−𝑄(5 8⁄ )−𝑄(3 8⁄ )+𝑄 (1 8⁄ )

𝑄(6 8⁄ )−𝑄(2 8⁄ )
. .......................  (2.13) 

For chosen values of k these coefficients are given below.  

Table 2: Coefficients of Skewness and Kurtosis 

𝒌 
Bowely’s Coefficient of 

Skewness 

Kelly’s Coefficient of 

Skewness 

Moors’ Coefficient of  

Kurtosis 
1/3 0.58122 0.878892 2.626243 

2/5 0.524416 0.829947 2.130335 

1/2 0.460899 0.763356 1.695482 
2/3 0.389332 0.673549 1.306793 

1.5 0.242252 0.446229 0.710842 
2.0 0.204931 0.381485 0.587236 

2.5 0.179907 0.336942 0.508578 
3.0 0.161623 0.303915 0.452927 

Inverse Burr type X distribution is a positively skewed and platy kurtic distribution.  
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Mode: 

 It can be seen that the probability density function is a decreasing function of 𝑥, for 𝑘 ≤
2

3
.  For 𝑘 >

2

3
,  the mode of the inverse Burr type X distribution is solution of the equations 

𝑔′(𝑦) = 0 and 𝑔′′(𝑦) < 0. Differentiating 𝑔(𝑦)  given in equation (3.3) with respect to ‘y’ and 
after some simplification we get the mode of the distribution as solution of the equation 

(3 −
2

𝑦2 ) − 𝑒−1 𝑦2⁄ (3 −
2𝑘

𝑦2 ) = 0. ............................................................ (2.14) 

Mean: 

 The expected value of inverse Burr type X distribution is given by  

∫ 𝑦𝑔(𝑦)𝑑𝑦 = ∫ 𝑅(𝑦)𝑑𝑦
∞

0

∞

0
. 

∫ 𝑦
2𝑘 𝑒−1 𝑦2⁄

𝑦3 (1 − 𝑒−1 𝑦2⁄ )
(𝑘−1)

𝑑𝑦 = ∫ (1 − 𝑒−1 𝑦2⁄ )
𝑘

 𝑑𝑦
∞

0

∞

0
 ................  (2.15) 

This integral has to be evaluated with the help of numerical integration only.  

III. ESTIMATION 

 The inverse Burr type X distribution given by (2.3) is generally known as a single 

parameter inverse Burr type X distribution. Its parametric estimation by maximum likelihood 
method based on a complete random sample of size n is the solution of the corresponding log 

likelihood equation given by  

𝜕𝑙𝑜𝑔𝐿

𝜕𝑘
= 0 ⇒

𝑛

𝑘
+ ∑ [0 − 0 + 𝐿𝑛 (1 − 𝑒−1 𝑦⁄

𝑖
2
)] = 0𝑛

𝑖=1 . ..........................  (3.1) 

Therefore, MLE of k is  

𝑘̂ =
−𝑛

∑ 𝐿𝑛(1−𝑒−1 𝑦⁄
𝑖
2

)𝑛
𝑖=1

. ................................................................................. (3.2) 

The asymptotic variance of 𝑘̂ is the reciprocal of expectation of negative of  
𝜕2𝑙𝑜𝑔𝐿

𝜕 𝑘2  and is given 

by 

𝑎𝑠𝑣𝑎𝑟 (𝑘̂) =
𝑘2

𝑛
. ........................................................................................ (3.3) 

If we are given a failure censored sample say 𝑦1 < 𝑦2 < ⋯ < 𝑦𝑟  from out of a planned 

complete random sample of size n with the highest (n-r) observations censored, we proceed for 

the maximum likelihood estimation of k as follows. The likelihood is given by  

𝐿 ∝ ∏ 2𝑘 𝑒−1 𝑦𝑖
2⁄

𝑦𝑖
3

𝑟
𝑖=1 (1 − 𝑒−1 𝑦𝑖

2⁄ )
(𝑘−1)

(1 − 𝑒−1 𝑦𝑟
2⁄ )

(𝑛−𝑟)
. ......................... (3.4) 

𝜕𝑙𝑜𝑔𝐿

𝜕𝑘
= 0 ⇒

𝑟

𝑘
+ ∑ 𝑙𝑜𝑔 (1 − 𝑒−1 𝑦𝑖

2⁄ )𝑟
𝑖=1 + (𝑛 − 𝑟)𝑙𝑜𝑔(1 − 𝑒−1 𝑦𝑟

2⁄ ) = 0. ................. (3.5) 

The MLE of k from the failure censored sample is given by 

𝑘̂𝑟 =
−𝑟

∑ 𝑙𝑜𝑔(1−𝑒−1 𝑦𝑖
2⁄ )𝑟

𝑖=1 +(𝑛−𝑟)𝑙𝑜𝑔 (1−𝑒−1 𝑦𝑟
2⁄ )

  .......................... (3.6) 
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The asymptotic variance of the MLE is the reciprocal of expectation of negative of  
𝜕2𝑙𝑜𝑔𝐿

𝜕𝑘2  to 

be obtained from (3.5) and is given by  

𝑎𝑠𝑣𝑎𝑟 (𝑘̂𝑟) =
𝑘2

𝑟
. ........................  (3.7) 

It may be noted that the asymptotic variance of MLE of k from a failure censored sample 

depends only on the number of uncensored observations(r), but is not influenced by the size n 
of the originally planned sample. From the asymptotic properties of MLEs we know that  

𝑘̂~𝑁 (𝑘,
𝑘2

𝑛
)    

𝑘̂𝑟~𝑁 (𝑘,
𝑘2

𝑟
), 

as the asymptotic sampling distributions of  𝑘̂,  𝑘̂𝑟  respectively. These would help us in 
developing asymptotic confidence intervals for k and tests of hypotheses on k. 

Example 

Nigm and Hamdy (1987) presented length of time in years for which a business operates until 
failure. It is considered that only the first 10 lifetimes of a random sample of 15 businesses are 

available. The data set is the following: 

1.01,1.05,1.08,1.14,1.28,1.30,1.33,1.43,1.59,1.62. The uncensored observations are r=10 and 
the size of the originally planned sample n=15. 

These sample observations are considered as to have come from an inverse Burr type X 

distribution with the possible values of the shape parameter as    𝑘 =
1

3
,

2

5
,

1

2
,

2

3
, 1.5,2,2.5, 𝑎𝑛𝑑 3. 

Let 𝑧𝑖 be the solution of equation 𝐺(𝑦) =
𝑖

𝑛+1
, 𝑖 = 1,2, … , 𝑟,  where n=15, r=10, and 𝐺(∙)  be 

the cdf of inverse Burr type X distribution. That is,  𝑧𝑖  is 𝑖𝑡ℎ  quantile of inverse Burr type X 
distribution. If 𝑥1, 𝑥2,… , 𝑥𝑟  denote the given censored sample with n=15, r=10 the coefficient 

of correlation between  𝑧𝑖 and 𝑥𝑖 for various values of the shape parameter k, may be taken as 

an indicator (the essence of well-known Q-Q Plot) of the fitness of the data to inverse Burr type 
X distribution. For the present example we have calculated these correlation coefficients with 

the above chosen values of k and are given below: 

Table 3: Fitness of the Distribution - Correlation Coefficients 
𝒌 1/3 2/5 ½ 2/3 1.5 2.0 2.5 3.0 

Correlation 

Coefficient 
0.973087 0.979422 0.984279 0.987249 0.985673 0.983619 0.981844 0.980338 

Among these, the correlation coefficient for 𝑘 =
2

3
 is the maximum, though all of them are 

more than 0.97. That is, inverse Burr type X distribution with 𝑘 =
2

3
  is the most suitable model 

to the sample data’ though at all the remaining values of k, the coefficient of correlation is quite 
significant. Using the sample data we can get the MLE of k in an inverse Burr type X model 
given by the formula (3.6) namely, 

𝑘̂𝑟 =
−𝑟

∑ 𝑙𝑜𝑔(1−𝑒−1 𝑦𝑖
2⁄ )𝑟

𝑖=1 +(𝑛−𝑟)𝑙𝑜𝑔 (1−𝑒−1 𝑦𝑟
2⁄ )

.  
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Substituting the given censored sample in the above formula we get the MLE of k as  𝑘̂𝑟 = 

0.737703.  

𝑎𝑠𝑣𝑎𝑟 (𝑘̂𝑟) =
𝑘2

𝑟
        

𝑎𝑠𝑣𝑎𝑟 (𝑘̂𝑟) = 0.04444        

The 95% confidence interval for 𝑘̂𝑟 is given by 𝑘 ± 1.96
𝑘

√𝑟
= (0.253462,1.079871). 
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