International Journal of Advanced Engineering Research and Applications (IJA-ERA) ISSN: 2454-2377
Volume — 3, Issue — 5, September — 2017

Design of an FPGA-based Embedded System
for a reliable loading of multichannel data in
the on-chip memory for DSP purposes

Prof. Eng. Agostino Giorgio
Politecnico di Bari, Dipartimento di Ingegneria Elettrica e dell’ Informazione, Bari, BA, Italy
E-mail Id: agostino.giorgio@poliba.it

Abstract: The approach to perform Digital Signal Processing (DSP) by means of an Embedded System
(ES) based on Field Programmable Gate Array (FPGA) and related Systems on Chip (SoC) is very
common, useful and efficient in the electronic design practice. Moreover, one of the main problems to
solve is to interface the ES with an external data source. The problem becomes further complicated for
multichannel signals. To this aim, the author has designed an ES able to efficiently load into the FPGA
memory data to be processed by the FPGA itself. Therefore, the aim of this paper is to describe the
designed interface and its validation results. The design has been performed using the Cyclone V
FPGA by Altera. The test has been performed using the evaluation board DE1-SoC by Terasic. The
test bench has been developed in MATLAB environment.

Keywords: FPGA, Embedded Systems, Digital Signal Processing, MATLAB.

I. INTRODUCTION

The most recent practice in the design of Integrated Circuits (IC’s) for Digital Signal Processing (DSP)
purposes, is strongly oriented towards a wide use of Programmable Logic Devices (PLD) [1],
especially the Field Programmable Gate Arrays (FPGAS), and Embedded Systems (ES) designed using
FPGAs [2].

In fact, an FPGA is a powerful PLD integrating combinational and sequential logic systems, memory
elements, and a processor. It may be a soft or hard processor or both [3, 4].

FPGAs are characterized by a great versatility combined with a great scalability, which makes them
ideal for research and prototyping purposes. In fact, unlike the Application Specific Integrated Circuits
(ASICs) [5] they allow to quickly modify the designed circuit/system according to test results and can
be purchased at a relatively low price. The drawback of FPGAs vs the ASICs is a quite worse
performance in terms of speed and power dissipation, but the high production costs of the latter makes
it preferable using the FPGA technology unless a very high rate of production is needed.

Any digital circuit can be designed by configuring the FPGA using a Hardware Description Language
(HDL), for example the VerilogHDL and the VHDL [6, 7].

Moreover, the presence inside the FPGA of a number of memory mapped Input/Output (1/0) devices,
i.e. chips of Random Access Memory (RAM) and registers, and the presence of a processor, allows a
software to run, also. Therefore, it is possible to design a complete ES in both software and hardware
part by the only FPGA chip [8].

Each FPGA factory provides also the design environment, well known as Integrated Development
Environment (IDE), useful to develop digital design and to program the device. For example, the Altera
factory provides the Quartus IDE [9], the Xilinix factory provides the Vivado suite [10] and so on.

Anyway, despite of the very significant capabilities of FPGAs to perform quickly and efficiently the
signal processing, the first problem that the designer has to solve is to interface the FPGA chip with
an external source of data. Therefore, in this paper, it is described the design of an ES optimized for

WWw.ijaera.org ©2017, IJA-ERA - All Rights Reserved 232


http://www.ijaera.org/
mailto:agostino.giorgio@poliba.it

International Journal of Advanced Engineering Research and Applications | Volume - 3, Issue - 5

(IJA-ERA) September - 2017

loading data coming from a multichannel signal in the on-chip memory of the FPGA. The specific
device (5SCSEMAS5F31C6) used for the design belongs to the Cyclone V family by Altera. Anyway,
the design approach is not limited to the Altera FPGA but is quite general and useful for other FPGAs
families and brands.

The developed ES has a hardware and a software part and includes the Nios 11 soft processor embedded
in the Cyclone V device where the software runs. A typical example of use is for loading and
processing an Electro Cardio Graphic (ECG) signal, coming from a number of simultaneous channels
ranging from 3 to 15 named derivations or leads. Therefore, data coming from the ECG signal are
structured in a matrix, i.e. an array of samples for each channel [11].

Therefore, in Section Il it is proposed an overview about the design environment powered by Altera.
In Section 11 it is described the designed ES in both of them its software and hardware parts. In Section
IV the test flow and results are described. Conclusions and final remarks are in Section V.

Il. ALTERA QUARTUS IDE: AQUICK OVERVIEW

The development environment for Cyclone V FPGA used in this design is the Altera's Quartus [9]. It
is a proprietary IDE software powered by the Altera Company. It provides the tools to design digital
systems and embedded systems, both of them by HDL entry and by schematic entry, and allows the
use of the Altera Intellectual Property (IP) for a quick and reliable implementation of very complex
functions in a few steps. Moreover, Quartus includes various tools for compiling, simulating, timing
and logic analysis, debugging, examining the RTL diagrams, pin assignment, device programming,
and so on. Fig. 1 shows the main view of the Quartus software.

The main tools available for design purposes are the file editor both of them in the text form and in
the schematic form, the Qsys and the pin planner. Moreover, the main tools available for debug
purposes are the waveform editor, the timing analyzer and the logic analyzer. Finally, the programmer
is the tool for programming the designed circuit into the FPGA.

w H w W L

- & e
-- G i
-
& L o .
- »
-

———
] P
L e

Fig. 1. Main view of the Quartus IDE by Altera

WWw.ijaera.org ©2017, IJA-ERA - All Rights Reserved 233


http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications | Volume - 3, Issue - 5

(IJA-ERA) September - 2017

A. File editor, pin planner, waveform generator, programmer

Figs. 2-4 show a typical design flow from the descriptive file creation to the FPGA programming,
referring to a simple design of a xor gate using the basic and-or-not gates [1].

B. Qsys tool

The Qsys tool in Quartus IDE is necessary for the design of embedded system having many hardware
parts and components such as processors, Input/Output (1/0) devices, memory chips, and so on [12].

Vel
INPLT

Fig. 2. Schematic file describing a xor gate by using and-or-not gates with the proper PIN assignment
made by the pin planner tool in Quartus IDE.

lu s 10.0ns 20.0 ns 30.0 ns 20.0ns 50.0 s 0.0 ns 70.0ns 0.0 ns %0.0ms  100.0ns
N Value at i 0 5 P i [ ' ' "
Ops Dps
2 |lEeDR] B1
o swia) B1
in_ owi B0 M I
B swio] 51 ] |

Fig. 3. Simulation of the designed xor gate using the waveform editor tool in Quartus, useful to
verify the correct logical behavior of the designed circuit

WWw.ijaera.org @2017, IJA-ERA - All Rights Reserved 234


http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

Volume - 3, Issue - 5

(IJA-ERA) September - 2017
2, Hardware Setup...| |DE-SoC [USB-1] Mode: |JTAG | progress: | 100% W|
[] Enable real-time ISP to allow background programming when available
% File Device Checksum Usercode Program/ Verify Blank- Examine
@ Start Configure Check
i Stop <none> SCSEMAS 00000000 <none>
output_files/quartus_ese... SCSEMASF31 00AFS510C 00AFS510C @
44 Auto Detect
, Delete
(2, Add Fie...
Yis Change File...
el N < >
£ Save Fie '
|} Add Device...
fiup
J'YDown =]
SCSEMAS SCSEMASF31
y: TDO

Fig. 4. Programming the FPGA to act as the designed circuit, using the Programmer tool in

Quartus

Fig. 5 shows a typical Qsys design screen, with the selected hardware parts (see the column “name”)
and their connections as bold dots at the cross-points between wires (see the column “Connections”).

€ & Qs - nios2asys (AU Desktop)\F progetto fi i0s2.qsys) = u] X
File Edit System Generate View Tools Help
i m - of || 3= System Contents z:s] Address Map Interconnect Requirements -0
| © & W system: niosz Path: clk
EES x ¥ 2
~| [Project 1 1| ¥ luse Connect Name Bxport Clock Base End RQ Tags Opcode Name
| -2 wew componen. L | R
{ + System X
Library =]
Basic Functions. it n_r
0P =
Interface Protocols a < ckreset Reset Output
Low Powier “ B jtag_uart UTAG UART
4 Memory Interfaces and Controllers Y ok Clock Input sys_sdra...
 Processors and Peripherals = reset Reset Input [chk]
i Qsys Interconnect avalon_jtag_siave  |Avalon Memory Mapped Slave [ck) 0x0400_00a0 0x0400_00a7
& University Program irg Interrupt Sender [elk)
| © ram On-Chip Memory (RAM or ROM)
t+—— da Clock Input sys_sdra...
st Avalon Memory Mapped Slave [clk1] 0x0400_1000 lox0400_1122
| resetl Reset Input [cik1]
D% jtag_master  TAG to Avalon Master Bridge
+— & Clock Input sys_sdra...
clk_reset Reset Input
i master Avalon Memory Mapped Master [chy
| —————  master_reset Reset Output
A | MNew...| [Ean, * M | & sdram SDRAM Controfler ‘
| ] & Clock Input ‘sys_sdra...
e T = o Reset it (o8 saram
T sl \Avalon Memory Mapped Slave [ck) & 020000_0000 0x03£f 228 SDRAM Controller [altera_avalon_new_sdram_controller 14.1]
|| nios: Al | o1 wire Conduit sdram T
B hex_0 PI0 (Parallel 10)
| « Clock Input sys_sdra...
reset Reset Input (G
st Avalon Memory Mapped Slave [ck) & 0x0400_0100 loxo0400_o10r
| 1 exernal_connection Conduit hex_0
B hex_1 PIO (Parallel 1/0)
| — & K Input ‘sys_sdra. v
SRR PSS U -
A4t 7 W current fiter: All Interfaces F
[Eessages 7| _oa|l
[l Type Path Message
I 1 Warning
|ios2.jtag_uart/Interrupt sender jtag_uart.irq is not connected to an interrupt recenver

Fig. 5. Typical Qsys design example. Bold dots are connections. Parts under the “Name” column are
hardware parts of the design

The Qsys allows the designer selecting the desired components by a menu and connecting them. The
design is then automatically generated as HDL file and then can be added to the main project in

Quartus.

WWw.ijaera.org

©2017, IJA-ERA - All Rights Reserved

235



http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications | Volume - 3, Issue - 5

(IJA-ERA) September - 2017

The Qsys tool allows designing ES including either the Nios Il soft processor [3], which is
implemented inside the FPGA through its description in HDL code, or the hard processor, named HPS
[4], also integrated on the FPGA chip and based on the Arm-Cortex architecture.

Another very useful component available in the Qsys menu is the JTAG Debug module. It allows the
communication between the designed system and a host computer making also possible actions as
loading a program into the on-board memory, debugging the software part of the designed ES using
breakpoints arbitrarily placed at any instruction of the program, editing and reading the contents of
memories and registers identified by their hexadecimal address.

A network of Avalon switch fabric called interconnection automatically generated by the Qsys tool
provides the right connections between the hardware components.

The instruction memory is a Random-Access Memory (RAM) integrated into the FPGA chip.

Finally, another very useful component is the JTAG UART interface. It is useful to connect to USB-
Blaster system that enables the connection between the evaluation board and a personal computer (PC).
In this design, the evaluation board used is the DE1 _SoC by Terasic mounting the Cyclone V
5CSEMAGS5F31C6 FPGA by Altera.

MR G @200k W

Disassembly - X
Goto instruction | Address (hex) or symbol name: H@ Hide
0x00000374 FC stw ra, 4isp) E
0x00000378 20zl i add rle, rd4, zero
0x0000037C call 0x000000DA (Ox00000368: _ fake fini)
0x00000380 add r2, rl6, zero
0x00000384 br -0x4 (0x00000384)
000000388 F 11 Lewr ra, 4(sp)
0x0000038C ] Llabr rlé, O{sp)
0x00000390 ] addi sp, sSp, Ox8
0x00000394 ret

volatile short int * leds_ptr
volatile short int * switches_ptr

{short int *) LEDS:
(short int #) SWITQ

while (1)
{

*leds_ptr = *switches_ptr:

nain:
0x00000398 addi rd4, zero, 0xzZ010
0x0000038C : addi r3, zero, 0x2000
$0x00000340 y 2] ldhuio r2, 0(r4)
0x000003A4 1 '] sthio rz2, 0{xr3)
0x00000348 FFI br -0xC (0x000003A0)

#include <stdio.h>

#ifdef _JTAG_UART BASE
1 |
Disassembly | Breakpoints /| Memory | Watches [ Trace |

q]

Fig. 6. Typical view of the AMP with a breakpoint marked by a bold dot on the left margin

WWw.ijaera.org @2017, IJA-ERA - All Rights Reserved 236


http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications | Volume - 3, Issue - 5

(IJA-ERA) September - 2017

C. Altera Monitor Program

Another very useful facility provided by Altera within the University Program is the “Altera Monitor
Program” (AMP) [12]. This tool allows building, assembling, downloading and debugging the
software part of the ES into the FPGA processor (Nios Il, the soft processor, and HPS the hard
processor).

Fig. 6 shows a typical view of the AMP debugging a program running on the Nios Il soft processor.
Further details about the AMP are in the following “Results” section.

1. DESCRIPTION OF THE DESIGNED EMBEDDED SYSTEM

The problem addressed in this paper is to perform a quick and reliable loading of data coming from a
multichannel source into the FPGA I/0 memory mapped devices for further processing steps. A typical
example, as already stated, is the ECG signal coming from a number of channels ranging from 3 to 15.

To load such data into the SRAM memory and make them available to the FPGA for the proper
processing steps, it is possible to follow a fully hardware or a mixed hardware/software approach.

A. Hardware data loading

The fully hardware approach consists in using signals of the SRAM controller properly synchronized
with the clock signal driving the other parts of the circuit, and a number of digital sub-circuits, logic
gates and registers, as figures 7-9 show.

In fig. 7, there are four main blocks. The first block is clock_gen and is enabled by the signal named
ck_enable. This first block generates a clock signal having the desired frequency (1 Khz in this case,
i.e. the sampling frequency) starting from the main clock available in the circuit (for example a 50
Mhz clock supplied by the DE1_SoC evaluation board).

P_AATD | : [
—— P g

00

Y -
T
w

L s

Fig. 7. Example of a circuit for the hardware data loading of a multichannel (10) signal into the on-
chip memory

The second block is sram and is the controller of the SRAM memory chip where data are stored and
made ready for loading and processing by the FPGA. This second block serially provides data to the
next block (called parallel) as 16-bit output bus named “signal [15..0]”. Therefore, this output bus

WWw.ijaera.org @2017, IJA-ERA - All Rights Reserved 237


http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications | Volume - 3, Issue - 5

(IJA-ERA) September - 2017

drives data of all channels serially towards the block parallel. This means that data coming from all
channels are sent in sequence: the first sample (16 bit) for each channel, then the second sample (16
bit) for each channel, and so on.

At this stage, the just mentioned third block parallel that receives data as serial input (16 bit per sample)
conveys them in parallel multiple output, restoring the multichannel data in the right size and format
and making them ready for processing.

Finally, the last block, called vip_detection, is properly a processing section designed and implemented
into the FPGA.

The signal wl_r0, coming as output from the SRAM controller, allows to enable the next step, i.e. the
data processing, only if all data are loaded and ready to be processed. Fig. 8 shows the detail of the
SRAM block.

lpm _comparedd {:-:--e

dataa[17..0] il
) geb i

datab[]=204799

Fig. 8. Detailed schematic of the SRAM block

The data flow is controlled by the flip flop JKFF, the Ipm_counter3 and the Ipm_comparelO:
Ipm_counter3 increments the “SRAM_ADDR [17..0]” output every clock pulse, so the output “signal
[15..0]” presents the corresponding value in the SRAM memory every clock pulse. When the empty
pin is high, the JKFF enables the counter and tells the wl1_r0O pin that the block is reading from the
SRAM. When the full pin is high, the JKFF stops the counter and pauses the reading. The
Ipm_comparel0 stops the data flow all data have been read. The reset pin resets the counter so the
reading will restart from the beginning of the SRAM.

Fig. 9 shows the detail of the parallel block. It acts as a buffer between the SRAM containing data and
the processing circuit, granting the synchronism and the right restoring in size and format of the
multichannel data. Pins full and empty drive the sram block to pause and resume the data flow
respectively. The decoder is needed to load data into the respective “First In First Out” (FIFO)
registers, enabling the right one at the right time for each channel. The wl_r0 signal is high when the
sram is providing data, and it sets all the FIFOs in write mode. When it is low, all the FIFOs are in
read mode. The other signals in schematics in figures 7-8-9 not mentioned above are useful only for
debug purposes.

WWw.ijaera.org @2017, IJA-ERA - All Rights Reserved 238


http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications | Volume - 3, Issue - 5

(IJA-ERA) September - 2017

bl |
T

HEH

| b

Fig. 9. Detailed schematic of the block called parallel

Data to be loaded are previously stored in a .bin file and then transferred into the SRAM chip available
on the evaluation board by a proper software utility developed by the author as a Graphical User
Interface (GUI) in Matlab environment that will be detailed in [13].

This hardware approach is not so reliable because of the high risk of mismatching between signals and
the clock running along the various parts of the circuit, due to the wide use of counters, comparators,
decoders and FIFO registers to be properly synchronized. This involves considerable design
difficulties and optimizations needs, and consequently high probability of fault risks. Moreover, it is
very hard a deep debug of the designed system, especially to verify that data have been successfully
loaded and properly structured in the output FIFOs.

B. Software/Hardware data loading: the proposed embedded system
To address and solve the problems typical of the fully hardware design, the solution adopted is to

WWw.ijaera.org @2017, IJA-ERA - All Rights Reserved 239


http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications | Volume - 3, Issue - 5

(IJA-ERA) September - 2017

design an ES controlled by the Nios Il processor with a fair reduction of the hardware employed. This
approach significantly reduces the fault risks also making it easy a deep debug of the data loading.

Fig. 10 shows the schematic of the hardware part of the designed ES.

ivm

- .- B .- - - . S - Friter_bank o g L ck y[15.0] ™7
R R T L reset 1k
. iLE”W R AL SR — ck y00[15.0] x00[15..0] ]
I e — — § reset y01[15.0] 1 x01[15..0]
sovciiscen| iinterface | — X00[15.0]  y02[15.0] ——x02[15..0]
COCK0 [ BB LT oy ok out_clk_export |—] | T (X0115.0]  y03[15.0] ———1x03[15.0]
; o | e pio_in_exports..0] pio_00_export[15..0] g — - x02(15.0]  y04[15.0] X04[15..0]
KEYI0] — E-,f-I reset_reset_n pio_01_export[15..0] o X03{15.0] ¥05[15.0] o X05[15.0]
SRR pio_02_export{15..0] ’:0‘3“? 0] VC’GU? 0] i ’:05[1? 0]
SR | o 03 exgort15. 0] X0S[15.0]  yO7[15.0] T—T———1x07[15.0]
C e pio_04_export{15.0) X06{15.0]  y08[15.0] m——t X08[15..0]
pio_05_export(15..0] X07[15.0]  y09[15.0] ™ x09(15.0]
pio_08_export{15..0] x08[15.0]  y10[15.0] — x10[15.0]
pio_07_expert{15..0] x09[15.0]  y11[15.0] =1 x11[15..0]
pio_08_export{15..0] x10[15..0] y12[15.0] x12[15..0]
pio_09_export[15..0] X11[15.0]  y13[15.0] —x13[15.0]
pio_10_export{15..0] X12(15.0] y14[15.0] - x14[15..0]
pio_11_export[15..0] x13(15.0) Dl st
pio_12_export[15...0] x14015.0] :
pio_13_export[15..0] 1 nst o

pio_14_export(15..0]

sdram_clk_ck PN AHI2 |- oo
sdram_ctrl_addr{12..0] ¥ ]
sdram_ctrl_bal1..0] {
sdram_ctrl_cas_n { PIN_AF11
sdram_ctr_cke I S R I
sdram_ctrl_cs_n PIN_AG11 | -
sdram_ctr_dq[15..0]4 1 .
sdram_ctr_dqm(1..0) 1 DQM,DRAM_LDQM
sdram_ctrl_ras_n PIN_AE13 |- .-
sdram_ctrl_we_n PIN_AA13 .

Fig. 10. The embedded system designed to optimize the data loading from a multichannel source

There are two main parts in the design: the interface and the processing part. The filter bank and the
vm block constitute the processing part of the ES and can change according to any processing
specifications. In this paper, the processing part is purely demonstrative and designed for debug
purposes only. In fact, in this paper, the focus is about the interface, which provides the data loading
and reading by the FPGA for the next processing step, whatever it is.

Fig. 11 shows in detail the interface of the ES designed by the Qsys tool.

The Nios II component (in the “Description” column of fig. 11) is the soft processor available onto the
FPGA chip and deals with the software task of the multichannel data loading.

The on-chip RAM is the instruction memory useful for the Nios Il operations.

The JTAG UART submodule is necessary for the communication between the personal computer and
the DE1_SoC evaluation board.

The SDRAM controller provides all signals necessary to manage and interface the data memory chip
available on the DE1-SoC evaluation board. It has a capacity of 512 Mbits (64 Mbytes). The chip is
organized into 4 banks from 8M half-word by 16 bits.

The pll component in fig. 11(a-c) is suitable to avoid the clock skew. The clock skew is a phenomenon
that occurs in synchronous digital circuits in which the same clock source comes to the various
components of the circuit at different times [14]. So, to avoid faults in the SDRAM performances due
to the clock skew it is necessary that its clock signal, DRAM_CLK, to advance the system clock of the

WWw.ijaera.org @2017, IJA-ERA - All Rights Reserved 240


http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications | Volume - 3, Issue - 5

(IJA-ERA) September - 2017

Nios Il of 3 nanoseconds. This is accomplished by using a phase-locked loop circuit (PLL).

The Parallel 1/0 (P1O) denominated pio_0, pio_1 and so on, up to pio_14, are the 15 registers
containing the bits of the samples to be processed.

Use  Connections Name Description Export Clock Base End IRQ
/] = ok Clock Source
(=8 ck_in Clock Input clk exported
(= clk_in_reset Reset Input reset '
r ck Clock Output ik
I clk_reset Reset Output
%) B nios2 Nios II (Classic) Processor
clk Clock Input clk
reset_n Reset Input ‘ [ck]
—— data_master Avalon Memory Mapped Master | [ck]
—t instruction_master Avalon Memory Mapped Master | [ck]
—— d_irq Interrupt Receiver ‘ [ck] IRO O IRQ 31—\
 m— jtag_debug_module_reset Reset Output [ck]
jtag_debug_module Avalon Memory Mapped Slave [ck] 0x400_0800 |0x400_0f£f
custom_instruction_master |Custom Instruction Master
™ B memory On-Chip Memory (RAM or ROM), |
dk1 Clock Input clk
s1 Avalon Memory Mapped Slave [ck1] # 0x400_1000 |0x400_1£££
resetl Reset Input [ck1]
%] [ jtag_uart JTAG UART
k Clock Input clk
reset Reset Input [cik]
avalon_jtag_slave Avalon Memory Mapped Slave ‘ [ck] 0x400_3000 |0x400_3007
irq Interrupt Sender [ck] >—§]
%] & sdram_ctrl SORAM Controller
ck Clock Input clk
reset Reset Input [cik]
s1 Avalon Memory Mapped Slave [ck] & 0x0 Ox3£Lf_£Eff
<A wire Conduit sdram_ctrl
%] 2 pll Altera PLL
refdk Clock Input clk
reset Reset Input
<+ outdk0 Clock Output sdram_dk pll_outdk0
%] B pio_in PIO (Paralel 1/0) ‘
dk Clock Input clk
reset Reset Input [ck]
> s1 Avalon Memory Mapped Slave [ck] @ 0x400_2100 |0x400_210£
<A external_connection IConduit pio_in
%] B out_clk PIO (Paralel 1/O)
ck Clock Input clk
reset Reset Input [chk]
s1 Avalon Memory Mapped Slave ‘ [ck] & 0x400_20£0 |0x400_20££
<A external_connection Conduit gout_dk

Fig. 11 (a). Embedded System design view in the Qsys tool

The PIO called out_clk provides a clock signal for the next stage of processing, so that it is
synchronized with the loading of samples on the registers.

Finally, the register “pio_in” is for debug purposes only. It serves to read the output data from the
processing block vm and to verify that it is consistent with the result expected from the MATLAB
model of the designed system, developed for debug purposes and described later.

www.ijaera.org @2017, IJA-ERA - All Rights Reserved 241


http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

Volume - 3, Issue - 5

(IJA-ERA) September - 2017
%] pio_0 ?no (Parallel 1/0)
ck (Clodk Input clk
resat }Heset Input [ck]
s1 Avalon Memory Mapped Slave [ck] 0x400_2000 (0x400_200f
O external_connection {Conduit pio_00
%] pio_1 PIO (Paralled 1/0)
ck (Clock Input |elk
resat Reset Input |[ch]
s1 Avalon Memory Mapped Slave |[c] Ox400_2010 |0Ox400_201%
<= external_connection [Conduit pio_01
= pio_2 ?no (Paralel 1/0)
ck (Clock Input clk
resat }Reset Input [ck]
51 Avalon Memory Mapped Slave [ck] 0x400_2020 (0x400_202f
= external_connection (Conduit pio_02
(%] pio_3 PIO (Parallel 1/0)
ck (Clock Input |clke
resat Reset Input |[cik]
51 Avalon Memory Mapped Slave | [l 0x400_2030 |0x400_203%
< external_connection (Conduit pio_03
= pio_4 F{o {Parallel 1/0)
=3 |Clodk Input clk
reset }Reset Input [ci]
sl Avalon Memory Mapped Slave [ci] 0x400_2040 |Ox400_204F
< external_connection |Conduit pio_04
%) pio_S P10 (Parallel 1/Q)
ck |Clock Input |clk
reset Reset Input (]
sl Avalon Memory Mapped Slave |[cik] 0x400_2080 |Ox400_205%
2= external_connection |Conduit pio_05
| pio_6 F{o {Parallel 1/0)
= 3 |Clock Input clk
reset }Reset Input [ck]
sl Avalon Memory Mapped Slave [ci] 0x400_20€0 |Ox400_206F
< external_connection Icw:hit pio_06
%) pio_7 P10 (Paralled 1/0)
ck (Clock Input |clke
resat Reset Input | [clk]
s1 Avalon Memory Mapped Slave | [ci] Ox400_2070 |0x400_207%
St external_cannection (Conduit pio_07

Fig. 11 (b). Embedded System design view in the Qsys tool

The base addresses of all the memory mapped 1/O devices are fixed by the designer by the Qsys to
easily address them for read/write operations.

The multichannel signal used to test the loading performances of the designed system is a 15-leads
ECG signal. Therefore, the first submodule of processing in fig.10 is a filter bank. It performs a band-
pass filtering on the 15-leads ECG signal. The filter used is a fourth-order Butterworth type, with cut-
off frequencies of 25 and 300 Hz.

The further processing submodule is called “vm” and it performs the calculation of the Vector
Magnitude (VM) on the 15 leads of the ECG signal.

Both processing steps on the data loaded are performed by the FPGA.
The software part of the designed ES is written in C language and runs on the Nios |1 soft processor.

It allows the Nios Il reading binary data from the on-board SDRAM memory and make them available
in the right structured form into memory-mapped registers (the 15 PIOs) ordered according to their
multichannel nature. So, allowing the FPGA correctly reading for the subsequent processing steps.
Data are loaded into the on-board SDRAM by means of the software GUI mentioned above [13].

WWw.ijaera.org @2017, IJA-ERA - All Rights Reserved 242


http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

Volume - 3, Issue - 5

(IJA-ERA) September - 2017
M | B pio_8 iPIO (Paralel 1/0) i
ok (Clock Input idk
reset Reset Input |[dk]
sl Avalon Memory Mapped Slave {[cik] 0x400_2080 |0x400_208%
: < external_connection iCondut pio_08 [
™M B pio_9 [PIO (Paralel 1/0)
ck |Clock Input |clk
reset [Reset Input {[ck]
| sl lAvalon Memory Mapped Slave ;[dk] 0x400_2090 |0x400_209¢
O-} external_connection §Condut pio_09
4 | B pio_10 PPIO (Paralel 1/0)
dk ‘Clod< Input ik
reset Reset Input E[dk]
sl lAvalon Memory Mapped Slave E[dk] 0x400_20a0 |0x400_20af
o external_connection {Conduit pio_10 |
M B pio_11 ;PIO (Parallel 1/0)
ck (Clock Input |clk
reset [Reset Input {[ck]
s1 |Avalon Memory Mapped Slave {[ck] 0x400_20b0 |0x400_20bf |
< external_connection !Condut pio_11
= | B pio_12 PIO (Paralel 1/0) |
ok ‘Oock Input |clk
reset [Reset Input i[dk]
s1 {Avalon Memory Mapped Slave i[dk] 0x400_20c0 |0x400_20cE
‘ <= external_connection ICondut pio_12
M | B pio_13 IPIO (Parallel 1/0)
ck |Clock Input ik
reset }Reset Input {[ck]
sl [avalon Memory Mapped Slave {[ck] 0x400_20d0 |0x400_204£ |
< external_connection fCondut pio_13
= | B pio_14 PIO (Paralel 1/0) |
ck [dod( Input |k
reset Reset Input f[d(]
-— s1 }Avalon Memory Mapped Slave ;[dk] 0x400_20e0 |0x400_20ef
<= external_connection |Conduit pio_14 ’

Fig. 11 (c). Embedded System design view in the Qsys tool

The instruction list of the C code is:

#define PIO_BASE_00 0x4002000
#define PIO_BASE_01 0x4002010
#define PIO_BASE_02 0x4002020
#define PIO_BASE_03 0x4002030
#define PIO_BASE_04 0x4002040
#define PIO_BASE_05 0x4002050
#define PIO_BASE_06 0x4002060
#define PIO_BASE_07 0x4002070
#define PIO_BASE_08 0x4002080
#define PIO_BASE_09 0x4002090
#define PIO_BASE_10 0x40020a0
#define PIO_BASE_11 0x40020b0
#define PIO_BASE_12 0x40020c0

WWw.ijaera.org

#define PIO_BASE_13 0x40020d0
#define PIO_BASE_14 0x40020e0
#define OUT_CLK_BASE 0x40020f0
#define SDRAM_BASE 0x0
#define SDRAM_END Ox3ffffff
#define END_WORD O0x7fff

int main (void)

{

volatile short int* pio_00 ptr

PIO_BASE_00;

volatile short int* pio_01 ptr

PIO_BASE_01;

volatile short int* pio 02 ptr =

PIO_BASE_02;

©2017, IJA-ERA - All Rights Reserved

(short
(short

(short

int*)
int*)

int*)

243


http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(JA-ERA)

volatile short int* pio_03_ptr = (short
int*) PIO_BASE_03;

volatile short int* pio_04_ptr = (short int*)
PIO_BASE _04;

volatile short int* pio_05_ptr = (short int*)
PIO_BASE _05;

volatile short int* pio_06_ptr = (short int*)
PIO_BASE_06;

volatile short int* pio_07_ptr = (short int*)
PIO_BASE 07;

volatile short int* pio_08 ptr = (short int*)
PIO_BASE_08;

volatile short int* pio_09_ptr = (short int*)
PIO_BASE_09;

volatile short int* pio_10_ptr = (short int*)
PIO_BASE_10;

volatile short int* pio_11 ptr = (short int*)
PIO_BASE_11;

volatile short int* pio_12_ptr = (short int*)
PIO_BASE_12;

volatile short int* pio_13 ptr = (short int*)
PIO_BASE_13;

volatile short int* pio_14 ptr = (short int*)
PIO_BASE_14;

volatile short int* out_clk_ptr = (short int*)
OUT_CLK_BASE;

volatile short int* sdram_ptr = (short int*)
SDRAM_BASE;

volatile int delay_count;

while(*sdram_ptr '= END WORD &&
sdram_ptr < SDRAM_END) {

*out_clk_ptr =0;

for(delay_count =5000000; delay_count!
=0;

--delay_count);
*pio_00_ptr = *sdram_ptr;
sdram_ptr = sdram_ptr + Ox1;
*pio_01 ptr = *sdram_ptr;

Www.ijaera.org

September - 2017

sdram_ptr = sdram_ptr + Ox1;
*pio_02_ptr = *sdram_ptr;
sdram_ptr = sdram_ptr + Ox1;
*pio_03_ptr = *sdram_ptr;
sdram_ptr = sdram_ptr + Ox1;
*pio_04_ptr = *sdram_ptr;
sdram_ptr = sdram_ptr + Ox1;
*pio_05_ptr = *sdram_ptr;
sdram_ptr = sdram_ptr + Ox1;
*pio_06_ptr = *sdram_ptr;
sdram_ptr = sdram_ptr + Ox1;
*pio_07_ptr = *sdram_ptr;
sdram_ptr = sdram_ptr + Ox1;
*pio_08_ptr = *sdram_ptr;
sdram_ptr = sdram_ptr + Ox1;
*pio_09 ptr = *sdram_ptr;
sdram_ptr = sdram_ptr + Ox1;
*pio_10_ptr = *sdram_ptr;
sdram_ptr = sdram_ptr + Ox1;
*pio_11 ptr = *sdram_ptr;
sdram_ptr = sdram_ptr + Ox1;
*pio_12 ptr = *sdram_ptr;
sdram_ptr = sdram_ptr + Ox1;
*pio_13 ptr = *sdram_ptr;
sdram_ptr = sdram_ptr + Ox1;
*pio_14 ptr = *sdram_ptr;
sdram_ptr = sdram_ptr + Ox1;
for(delay_count = 5000000; delay_count !=0;
--delay_count);
*out_clk_ptr =1,
for(delay_count = 10000000; delay_count !'=0;
--delay_count);

*pio_08_ptr = 0;

@2017, IJA-ERA - All Rights Reserved 244

Volume - 3, Issue - 5


http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications | Volume - 3, Issue - 5

(IJA-ERA) September - 2017
} *pio_09 ptr =0;
*pio_00 ptr =0; *pio_10 ptr =0;
*pio_01_ptr =0; *pio_11 ptr =0;
*pio_02_ptr =0; *pio_12 ptr =0;
*pio_03_ptr =0; *pio_13 ptr =0;
*pio_04 ptr =0; *pio_14 ptr =0;
*pio_05_ptr =0; while(1);
*pio_06_ptr =0; }
*pio_07_ptr =0;

In the first few lines of the code, there are the constant statements that indicate the base addresses of
the used memory components, the SDRAM and the PI1O (1/O memory mapped devices). They are the
same addresses fixed by the Qsys design tool. There is also the declaration of the endword useful to
end the data loading operations.

Inside the “main” function they are instantiated pointers as “short int” type to which the values of the
constants defined above are assigned. These pointers allow the memory access according to the
addresses they point to. The type “short int” is because of the width of both of them the SDRAM
memory cells and of the PIO is 2 bytes (1 half-word). The “out_clk” signal is 1 bit wide and then still
does not exceed the short int representation. The integer variable “delay_count” is also used in the
delay loop: it is set as “volatile” type because otherwise the compiler eliminates the loop.

The condition of the next “while” control statement is that the loop is repeated until the pointer to the
SDRAM does not reach the end-memory address, or until the variable to be pointed it is not the
endword. Until the occurrence of one of these two conditions, the instructions within the loop cycle.

The loop begins by set at 0 the out_clk signal. Then it follows a delay loop to ensure that the negative
clock edge reaches all the synchronous elements of the circuit. Then, the Nios Il processor reads data
from the SDRAM pointed cell and writes them into the first PIO. Therefore, the pointer to the SDRAM
is increased by 1 in order to point to the next memory cell. These operations repeat for all 15 PIO
registers.

Then, there is another delay loop to ensure the data settling in the PIO registers before the out_clk
signal switches to 1, generating the rising edge of the clock signal starting the subsequent processing
step.

Finally, after another delay loop terminates the main loop. The length of the delay loops was chosen
to ensure that the clock driving the processing steps, i. €. the out_clock signal, has a duty cycle of about
50%.

After the end of the cycle, the PIO are reset, i.e. their content is set equal to 0. The last line contains a
while loop with condition 1, meaning that the program stops on this instruction, stopping the samples
loading.

This code runs on the Nios Il soft processor, as already stated.

IV. RESULTS

The author has developed a Matlab model for debug purposes. The model includes the signal
processing steps implemented in the FPGA, also. The test signal is a high resolution multichannel (15-

WWw.ijaera.org ©2017, IJA-ERA - All Rights Reserved 245


http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications | Volume - 3, Issue - 5

(IJA-ERA) September - 2017

leads) ECG signal, characterized by a 1 kHz sample rate, 16-bit resolution with 0.5 microvolts/LSB,
lasting about 2 minutes. Data are firstly stored in a MATLAB matrix, called “B”, which dimensions
are 115000x15. Then, it has been created a binary (B.bin) file with the B matrix using the following
Matlab commands:

id = fopen('B.bin’, 'w');
fwrite(id, B, 'int16");
fclose(id);

The creation of the binary file is a necessary step in order to load data in a binary format on the SDRAM
chip available in the DE1_SoC evaluation board mounting the FPGA.

The loading of the B.bin file into the SDRAM, can be performed either by the Altera Monitor Program
or by a loading utility developed by the author [13].

The filtering has been implemented in Matlab using the biquad function together with the filtbiq
function [14]. The VM calculation has been implemented developing a user-defined Matlab function
according to its definition [15].

Moreover, together with the Matlab model and the B.bin file, it has been created a project into the
Altera Monitor Program (AMP) in order to program the FPGA, compile and load the C code into the
instruction memory of the Nios Il processor.

Creating the project in the AMP it is necessary to select the architecture Nios Il. Then, choose to use
a custom system by selecting the. sopcinfo and .sof files coming from the Quartus compilation of the
hardware part of the designed ES (see Figs. 10-11). Then, select the program in C (or assembly if that).
Finally, boot on the board, compile the program and load it into processor instruction memory.

To start the debug, you can go in the disassembly screen to put the breakpoint in correspondence of
the instruction 0x400145C, at the beginning of the while loop where the out_clk signal is equal to 0.
The situation is as Fig. 12 shows.

Then, the binary data stored in the B.bin file are loaded into the SRAM memory by the AMP facility
“Load file into memory” and then managed by the Nios II processor to make data available for the
FPGA processing in the right structure.

Fig. 13 shows the debug result of the data loading into SRAM chip on the DE1_SoC evaluation board.

Any memory location (address) has its own sample value read by the AMP in the half-word (2 bytes),
decimal, signed numbers format. Then, the Nios Il processor loads these data into the PIO registers
according to their original multichannel nature, making them available for the FPGA processing
operations. To this aim, it is necessary to start the execution of the C code described above, compiled
and loaded on the Nios Il processor instruction memory by the AMP facilities. It is easy to verify that
before starting the program, the status of the P10 registers is 0, as expected because of no data have
been still loaded until the Nios 11 does not act, as Fig. 14 shows.

To evaluate the status of the PIO by the AMP it is necessary to move the view for the memory addresses
related to the PIO’s, i.e. beginning from the memory address 0x4002000. This can be done with the
function “Goto address” remembering to select the Query option Memory Mapped Devices into the
AMP options (see fig. 14).

WWw.ijaera.org @2017, IJA-ERA - All Rights Reserved 246


http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications | Volume - 3, Issue - 5

(IJA-ERA) September - 2017
Disassembly - X
Goto mtmcl:lun‘ Address (hex) or symbol name: . ﬁoj
e
for (delay count = 10000000; delay count !'= 0; --delay count):; A Delay 1
0x04001450 orhi 6, zero, OxS9
0x04001454 LSADD4 addi 6, r6, -0xX635E0
volatile short int * out_clk_ptr = (short int *) OUT_CLE_BASE:
wolatile short int * sdram ptr = (short int *) 3SDRAM BASE:
wolatile int delay count; /4 Wariabile
vhile(*adram ptr != END_WORD g& sdram ptr < SDRAM END) // Finchid"
0x04001458 br OxES (0x04001544)
{
*out_clk ptr = 0: // Hetto ad
$0x0400145C 2 sthio zero, O(r5)
for (delay count = 5000000; delay count '= 0; --delay count): S/ Delay lo
0x04001460 stwio rd, 0O(sp)
0x04001464 litwio r2, 0(sp)
Ox04001468 2 beqyg t2, zero, Oxl4 (0x04001480)
Ox0400146C libwrio 2, 0(sp)
0x04001470 I addi 2, r2, -0xl
0x04001474 stwio r2, 0O(sp)
0x04001478 liwio t2, O0(sp)
0x0400147C F E hne re, zero, -0Oxld [0x0400146C)
*pio_00_prtr = *sdram prr; A Legge il|w
(4 [ b
Disassembly | Breakpoints | Memory | Watches | Trace |

Fig. 12. The disassembly screen of the Altera Monitor Program for a debug step-by step using
breakpoints.

At this stage, it is possible to launch the program on Nios II and execute it in the “step-by step” mode
for a deep debug purpose, with the “Continue” command to go from one instruction to the subsequent
one. Thanks to the breakpoint set, the program stops at the beginning of each read cycle, allowing
observing in the memory window the value of the samples loaded on the P10, in correspondence of
the addresses between 0x4002000 and 0x40020EO0.

At the memory address 0x40020F0, the value of the out_clk signal is observable, which at the
breakpoint is always 1. At the address 0x4002100, is instead observed the value of the output sample
from the module that calculates the VM.

Continuing the program execution, it always stops on the same instruction allowing observing the new
values loaded into the P10 and into the VM registers.

The samples loaded on the PIO perfectly match the numerical values in the columns of the B matrix
in MATLAB, as fig. 15a and fig. 15b show. Therefore, it is verified the correctness of the design and
of the loading task. The little mismatching between the VM values calculated by the Matlab model
(fig. 16) and those calculated by the FPGA is not significant and is due to the different processing
methods.

WWw.ijaera.org @2017, IJA-ERA - All Rights Reserved 247


http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications | Volume - 3, Issue - 5

(IJA-ERA) September - 2017
Memory = i
Gotoaddress(hex: | Go|[] Query Memory Mapped Devices

| |
+0x0 +0x4 +0x 5 +0xcC e
Load file 0x00000000 225 -1639  -1865 707 1045 -1752 z04 849 B
Browse... | | 0%00000010 1781 1036 -33 840 36 -849 -231 216
Select e fle 0x00000020 -1642 -1859 713 1039 -1751 zon 835 1770
|=r\0ndhi\'=\.T6th\5-bi"| 0x00000030 1026 -39 837 3z -547  -229 212 -1651
File type: Binasy fomnat 000000040 -1863 720 1038 -1757 196 825 1757 1018
0x00000050 -44 830 28 -857 -225 211 -1660 -1871
9“"‘“““‘“‘”‘:] 0x00000060 724 1041 -1766 198 816 1745 1017 -49
0x00000070 823 19 -873  -219 205 -1670  -1875 732
0x00000050 1040 -1772 203 804 1727 1007 .60 811
Ox00000050 & -876 -207 z05 -1683 -1888 739 1047
0x000000A0  -1786 204 794 1716 996 -63 805 -3
O0x000000ED -589 -195 203 -1694 -1896 745 1050 -1795 I
0x000000C0 203 782 1704 937 -67 798 -9 -g93
0x000000D0 -189 200  -1702 -1902 750 10852 -1802 199
0x000000ED 767 1637 973 -77 792 -13 -897  -1834
0x000000F0 196 -1714  -1909 759 1053 -1812 197 758
0x00000100 1672 962 -o0 782z -29  -90l -175 194
Ox00000110 -1722 -1916 764 1055 -1819 185 Tdd 1651
0x00000120 943 -104 766 -4z -908  -174 199 -1729
000000130 -1928 764 1064 -1828 197 731 1634 932
0%00000140 -116 750 -s5  -922 -171 191 -1739 -1930
0%00000150 773 1061  -1835 201 721 1618 918 -126
0x00000160 734 -70 -926  -160 174 -1759  -1933 792
0x00000170 1054 -1846 zoo 706 1597 @98 -1az 717
0x00000180 -6  -948 -158 160  -1788 -1948 814 1055 -l
4| I
Disassembly | Breakpoints , Memory / Watches | Trace |

Fig. 13. Result of the data loading by the B.bin file into on-board SRAM. Data are stored into the
memory locations and are ready to be managed by the Nios Il processor for the subsequent
processing steps by the FPGA:

Memory

‘mmm@@mgyhlmnryhhppedwcs m
+0x0 04 +0x & +Hxe

Load file 0x04002000

Select a file: 0x04002010

Ox 04002020
\OneDrive\_Tesi\matlab\B.bin | 04002030

File type: Binary format 0x04002040
0x04002050

Start address (hex): l:’ 0x04002060

l l
D X

Ox0400Z070
0x04002050
0x04002050
0x 04002040
0x040020B0
Ox0400Z0C0
0x040020D0
0x0400Z0EQ
0x040020F0
0x04002100
Ox04002110
0x04002120 : ? :
0x04002130 ? y ? ?

0x04002140 ? ? ? ?

0x04002150

Ox04002160 ? 2 ? ? ? ?

0x04002170 7 . ? : i

0x 04002180 2 ? ? 2 ? ?

Lo )
Disassembly | Breakpoints , Memory | Watches | Trace |

S~ — T — T — I — I~ I - I — I — I - — I — O — I — O — I — I~ I

SN — I — T — I — I — I — I — T — O — I — I — I — O - I - O — I - I ]
w 0000000000000 0OCO0OO0OO0O

@ 000000000000 O0DO0OOO
RCI o e T e Y s R e Y e O e N e Y e s T e O s T e Y e Y e
CIY o e T e Y s R e Y O s T e Y N s T e O s T e Y e o T o
w 0000000000000 00 0O
(RCT o T T e Y e R e Y e O e N e Y e s T e O e T e Y e Y e e

|4/

Fig. 14. The P1O are reset to 0 until the Nios Il does not operate.

www.ijaera.org ©2017, IJA-ERA - All Rights Reserved 248


http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(JA-ERA)

V. CONCLUSIONS

Volume - 3, Issue - 5

September - 2017

In this paper, it has been described an ES useful for a reliable loading of data coming from a
multichannel signal into a FPGA for DSP purposes. The design has been compared with another one
developed according to a fully hardware approach and it has been clearly addressed the significant
reduction of fault risks following a mixed hardware/software approach, i.e. using an ES. Moreover,
the design has been tested and successfully validated using the AMP. The conclusion is that the
designed ES allows a reliable multichannel data loading for the FPGA processing being also the system
quite simple and strongly reliable both of them in its software and hardware parts. The next step is to
develop all the DSP chain in order to process the signal according to any specifications.

0x04002000 225 0x04002000 216 0x04002000 2la
0x04002010 -1639 0x04002010 -l642 0x04002010 -1651
0x04002020 -1865 Ox04002020 -1859 0x04002020 -1863
0x04002030 707 0x04002030 713 0x04002030 720
0x04002040 1045 0x04002040 1039 0x04002040 1038
0x04002050 -1752 0x04002050 -1751 Ox04002050 =1757
0x04002060 z04 0x0400Z060 200 0x04002060 196
0x04002070 G49 0x04002070 G35 Ox 04002070 825
0x04002080 1781 0x0400Z080 1770 0x04002080 1757
0x04002090 1036 O0x0400Z080 loza Ox 04002090 1018
0x04002040 =33 Ox0400Z0A0 -39 0x04002040 -44
0x040020E0 &40 Ox0400Z0B0 837 0x040020E0 830
0x040020C0 30 Ox04002Z0C0 32 0x040020C0 28
Ox040020D0 -G49 Ox040020D0 -847 0x040020D0 -357
Ox0400Z0E0D =231 0x040020E0 -229 0x04002Z0E0 -228
Ox040020F0 1 0x040020F0 1 0x0400Z0F0 1
Ox04002100 1] 0x04002100 1] 0x04002100 104z
0x04002000 2ll Ox 04002000 205
0x0400Z010 =1660 Ox04002010 -1670
0x04002Z02Z0 =1871 0x04002020 -1875
0x04002030 724 0x04002030 732
0x04002040 104l Ox04002040 1040
0x04002050 -1766 0x04002050 -1772
0x04002060 19§ 0x04002060 203
0x04002070 gle 0x04002070 g04
0x0400Z080 1745 0x04002050 1727
0x04002090 1017 Ox 04002090 1007
0x 04002040 -439 Ox 04002040 -&0
0x040020B0 823 0x040020B0 811
0x040020C0 19 Ox040020C0 [
0x040020D0 =873 O0x040020D0 -876
0x0400Z0ED =219 0x0400Z0E0 -207
0x0400Z0F0 1 Ox0400Z0F0 1
0x04002100 2560 Ox04002100 2217

Fig. 15a. Data loaded by the Nios Il after 5 cycles into the P1O registers, read from the FPGA for

WWw.ijaera.org

processing next steps.

©2017, IJA-ERA - All Rights Reserved

249


http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications | Volume - 3, Issue - 5

(IJA-ERA) September - 2017
1 2 3 4 5
1 225 216 212 211 205
2 -1639 -1642 -1651 -1660 -1670
3 -1865 -1859 -1863 -1871 -1875
4 707 713 720 724 732
5 1045 1039 1038 1041 1040
6 -1752 -1751 -1757 -1766 -1772
7 204 200 196 198 203
8 249 835 825 816 204
9 1781 1770 1757 1745 1727
10 1036 1026 1018 1017 1007
11 -33 -39 -4 -49 -60
12 840 837 830 823 an
13 3 3 28 19 6
14 -849 -847 -857 -873 -876
15 -231 -229 -225 -219 -207

Fig. 15b. Data stored into the B.bin binary data file, read in Matlab. There are exactly as in fig. 15a
meaning the correct data loading operation by the Nios Il processor.

1 2 3 4 5
1 1041 2560 2216 1170 864

Fig. 16. Vector magnitude calculated in Matlab matches enough that calculated by the FPGA
processing data loaded, stored in the register which address is 0x4002100. The little mismatching is
not significant and because of different processing methods.

Conflict of interest: The author declares that he has no conflict of interest.
Ethical statement: The author declares that he has followed ethical responsibilities.

REFERENCES

[1] A. Giorgio, “Dispositivi Logici Programmabili” in Lezioni di Fondamenti di Elettronica dei Sistemi
Digitali, 1% ed, Roma Italy, Gruppo Ed. L’Espresso, 2016, pp. 251-270

[2] C. Brandolese, W. Fornaciari, “Tecnologie Hardware” in Sistemi Embedded, 1% ed., Milano Italy, Pearson
Prentice Hall, 2007, pp. 163-181

[3] Intel Corporation (February 2017), Altera, Nios I processor, Available:
https://www.altera.com/products/processors/overview.html

[4] Altera Corporation (February 2012), SoC FPGA ARM Cortex A9 MPCore Processor Advance
Information Brief. Available: https://people.ece.cornell.edu/land/courses/ece5760/DE1_SOC/aib-01020-
soc-fpga-cortex-a9-processor.pdf

[5(] M. J. ' S. Smith, (November, 14, 2004), Addison Wesley, [online] Available:
https://archive.org/stream/ApplicationSpecificintegratedCircuitsAddisonWesleyMichael JohnSebastianSmit
h/Application-Specific%20Integrated%20Circuits%20-
%20Addison%20Wesley%20Michael%20John%20Sebastian%20Smith#page/n0/mode/2up

[6] S. Brown, Z. Vranesic, (2009), Fundamentals of Digital Logic with VHDL Design (3" ed.), McGrawHill,
[online] Available: https://archive.kottnet.net/Academic-
Life/KTH/Fundamentals%200f%20Digital%20Logic%20With%20VHDL%20Design%203rd%20Edition.p
df

WWw.ijaera.org @2017, IJA-ERA - All Rights Reserved 250


http://www.ijaera.org/
https://www.altera.com/products/processors/overview.html
https://people.ece.cornell.edu/land/courses/ece5760/DE1_SOC/aib-01020-soc-fpga-cortex-a9-processor.pdf
https://people.ece.cornell.edu/land/courses/ece5760/DE1_SOC/aib-01020-soc-fpga-cortex-a9-processor.pdf
https://archive.org/stream/ApplicationSpecificIntegratedCircuitsAddisonWesleyMichaelJohnSebastianSmith/Application-Specific%20Integrated%20Circuits%20-%20Addison%20Wesley%20Michael%20John%20Sebastian%20Smith#page/n0/mode/2up
https://archive.org/stream/ApplicationSpecificIntegratedCircuitsAddisonWesleyMichaelJohnSebastianSmith/Application-Specific%20Integrated%20Circuits%20-%20Addison%20Wesley%20Michael%20John%20Sebastian%20Smith#page/n0/mode/2up
https://archive.org/stream/ApplicationSpecificIntegratedCircuitsAddisonWesleyMichaelJohnSebastianSmith/Application-Specific%20Integrated%20Circuits%20-%20Addison%20Wesley%20Michael%20John%20Sebastian%20Smith#page/n0/mode/2up
https://archive.kottnet.net/Academic-Life/KTH/Fundamentals%20Of%20Digital%20Logic%20With%20VHDL%20Design%203rd%20Edition.pdf
https://archive.kottnet.net/Academic-Life/KTH/Fundamentals%20Of%20Digital%20Logic%20With%20VHDL%20Design%203rd%20Edition.pdf
https://archive.kottnet.net/Academic-Life/KTH/Fundamentals%20Of%20Digital%20Logic%20With%20VHDL%20Design%203rd%20Edition.pdf

International Journal of Advanced Engineering Research and Applications | Volume - 3, Issue - 5

(IJA-ERA) September - 2017

[7] S. Palnitkar, (March, 3, 2003), Verilog HDL: A Guide to Design and Sinthesys (2" ed.), Prentice Hall,
[online] Awvailable the 1% ed.: http://www.lapps.com/electronicsengg/books/Verilog%20HDL%20-
%20Samir%20Palnitkar.pdf

[8] P. Marwedel, (2011), Embedded Systems Design, (1% ed.), Springer Science

[9] Altera Corporation (2016), Software Download Available: https://www.altera.com/downloads/download-
center.html

[10] Xilinix Corporation (2016), Software Download Available: https://www.xilinx.com/support/download.html

[11] A. Giorgio, “A miniaturized medical device for health monitoring and teleassistance applications”, Int.
Jour. Of Bioinf. Research, vol. 4, no. 1, p. 258-262, April 2012, ISSN: 0975-3087

[12] Altera Corporation (2016), Embedded Systems Training Tutorials, Available:
https://www.altera.com/support/training/university/material_embedded_systems.html

[13] A. Giorgio, “Interfacing FPGAs with Matlab using JTAG”, unpublished

[14] The Mathworks (2017), Biquad Filter, Available:
https://it.mathworks.com/help/dsp/ref/biquadfilter.html?s_tid=srchtitle

[15] A. Giorgio, “A Model for the Real Time Detection of Ventricular Late Potentials Oriented to Embedded
Systems Implementation”, Int. J. of Adv. Eng. Res. and App. (IJA-ERA) ISSN: 2454-2377, vol. 1, no. 12,
pp. 500-511, April 2016.

WWw.ijaera.org @2017, IJA-ERA - All Rights Reserved 251


http://www.ijaera.org/
http://www.1apps.com/electronicsengg/books/Verilog%20HDL%20-%20Samir%20Palnitkar.pdf
http://www.1apps.com/electronicsengg/books/Verilog%20HDL%20-%20Samir%20Palnitkar.pdf
https://www.altera.com/downloads/download-center.html
https://www.altera.com/downloads/download-center.html
https://www.xilinx.com/support/download.html
https://www.altera.com/support/training/university/material_embedded_systems.html
https://it.mathworks.com/help/dsp/ref/biquadfilter.html?s_tid=srchtitle

