Design of an FPGA-based Embedded System for a reliable loading of multichannel data in the on-chip memory for DSP purposes

Prof. Eng. Agostino Giorgio

Politecnico di Bari, Dipartimento di Ingegneria Elettrica e dell'Informazione, Bari, BA, Italy

E-mail Id: agostino.giorgio@poliba.it

Abstract: The approach to perform Digital Signal Processing (DSP) by means of an Embedded System (ES) based on Field Programmable Gate Array (FPGA) and related Systems on Chip (SoC) is very common, useful and efficient in the electronic design practice. Moreover, one of the main problems to solve is to interface the ES with an external data source. The problem becomes further complicated for multichannel signals. To this aim, the author has designed an ES able to efficiently load into the FPGA memory data to be processed by the FPGA itself. Therefore, the aim of this paper is to describe the designed interface and its validation results. The design has been performed using the Cyclone V FPGA by Altera. The test has been performed using the evaluation board DE1-SoC by Terasic. The test bench has been developed in MATLAB environment.

Keywords: FPGA, Embedded Systems, Digital Signal Processing, MATLAB.

I. INTRODUCTION

The most recent practice in the design of Integrated Circuits (IC's) for Digital Signal Processing (DSP) purposes, is strongly oriented towards a wide use of Programmable Logic Devices (PLD) [1], especially the Field Programmable Gate Arrays (FPGAs), and Embedded Systems (ES) designed using FPGAs [2].

In fact, an FPGA is a powerful PLD integrating combinational and sequential logic systems, memory elements, and a processor. It may be a soft or hard processor or both [3, 4].

FPGAs are characterized by a great versatility combined with a great scalability, which makes them ideal for research and prototyping purposes. In fact, unlike the Application Specific Integrated Circuits (ASICs) [5] they allow to quickly modify the designed circuit/system according to test results and can be purchased at a relatively low price. The drawback of FPGAs vs the ASICs is a quite worse performance in terms of speed and power dissipation, but the high production costs of the latter makes it preferable using the FPGA technology unless a very high rate of production is needed.

Any digital circuit can be designed by configuring the FPGA using a Hardware Description Language (HDL), for example the VerilogHDL and the VHDL [6, 7].

Moreover, the presence inside the FPGA of a number of memory mapped Input/Output (I/O) devices, i.e. chips of Random Access Memory (RAM) and registers, and the presence of a processor, allows a software to run, also. Therefore, it is possible to design a complete ES in both software and hardware part by the only FPGA chip [8].

Each FPGA factory provides also the design environment, well known as Integrated Development Environment (IDE), useful to develop digital design and to program the device. For example, the Altera factory provides the Quartus IDE [9], the Xilinix factory provides the Vivado suite [10] and so on.

Anyway, despite of the very significant capabilities of FPGAs to perform quickly and efficiently the signal processing, the first problem that the designer has to solve is to interface the FPGA chip with an external source of data. Therefore, in this paper, it is described the design of an ES optimized for

(IJA-ERA)

loading data coming from a multichannel signal in the on-chip memory of the FPGA. The specific device (5CSEMA5F31C6) used for the design belongs to the Cyclone V family by Altera. Anyway, the design approach is not limited to the Altera FPGA but is quite general and useful for other FPGAs families and brands.

The developed ES has a hardware and a software part and includes the Nios II soft processor embedded in the Cyclone V device where the software runs. A typical example of use is for loading and processing an Electro Cardio Graphic (ECG) signal, coming from a number of simultaneous channels ranging from 3 to 15 named derivations or leads. Therefore, data coming from the ECG signal are structured in a matrix, i.e. an array of samples for each channel [11].

Therefore, in Section II it is proposed an overview about the design environment powered by Altera. In Section III it is described the designed ES in both of them its software and hardware parts. In Section IV the test flow and results are described. Conclusions and final remarks are in Section V.

II. ALTERA QUARTUS IDE: A QUICK OVERVIEW

The development environment for Cyclone V FPGA used in this design is the Altera's Quartus [9]. It is a proprietary IDE software powered by the Altera Company. It provides the tools to design digital systems and embedded systems, both of them by HDL entry and by schematic entry, and allows the use of the Altera Intellectual Property (IP) for a quick and reliable implementation of very complex functions in a few steps. Moreover, Quartus includes various tools for compiling, simulating, timing and logic analysis, debugging, examining the RTL diagrams, pin assignment, device programming, and so on. Fig. 1 shows the main view of the Quartus software.

The main tools available for design purposes are the file editor both of them in the text form and in the schematic form, the Qsys and the pin planner. Moreover, the main tools available for debug purposes are the waveform editor, the timing analyzer and the logic analyzer. Finally, the programmer is the tool for programming the designed circuit into the FPGA.

Fig. 1. Main view of the Quartus IDE by Altera

Volume – 3, Issue – 5 September – 2017

A. File editor, pin planner, waveform generator, programmer

Figs. 2-4 show a typical design flow from the descriptive file creation to the FPGA programming, referring to a simple design of a xor gate using the basic and-or-not gates [1].

B. Qsys tool

The Qsys tool in Quartus IDE is necessary for the design of embedded system having many hardware parts and components such as processors, Input/Output (I/O) devices, memory chips, and so on [12].

Fig. 2. Schematic file describing a xor gate by using and-or-not gates with the proper PIN assignment made by the pin planner tool in Quartus IDE.

\square	Name	Value at	0 ps	10.0 ns	20.0 ns	30.0 ns	40.0 ns	50.0 ns	60.0 ns	70.0 ns	80.0 ns	90.0 ns	100.0 ns
	Ivame	0 ps	0 ps										
ᅄ	LEDR[0]	B 1								uur			
<u>in</u>	SW[2]	B 1											
<u>in</u>	SW[1]	в 0									للتالك		
<u>in</u>	SW[0]	B 1											
			1										

Fig. 3. Simulation of the designed xor gate using the waveform editor tool in Quartus, useful to verify the correct logical behavior of the designed circuit

Fig. 4. Programming the FPGA to act as the designed circuit, using the Programmer tool in Quartus

Fig. 5 shows a typical Qsys design screen, with the selected hardware parts (see the column "name") and their connections as bold dots at the cross-points between wires (see the column "Connections").

IP Catalog 88	- d 🗆	Syste	m Contents 🔱	Address Map 💠	Interconnect Requirements								- 1
	× 🗱		System	: nios2 Path: clk									
oject		😤 Use	Connections	Name	Description	Export	Clock	Base	End	IRQ	Tags	Opcode Name	
New Component				🖻 dk	Clock Source								
ystem		×	- Pr	clk_in	Clock Input	clk	exported						
ny Sic Functions					reset Reset Input	reset							
SP		-		clk	Clock Output	Double-click to ex	coort dk						
terface Protocols				clk_re	et Reset Output	Double-click to es							
ow Power				🗄 jtag_u	art JTAG UART								
lemory Interfaces and Controllers			+	↔ → clk	Clock Input	Double-click to es	port sys_sdra						
rocessors and Peripherals		-	+++	reset	Reset Input	Double-click to e	mort [clk]						- 1
sys Interconnect				avalor	itag slave Avalon Memory Mapp	ded Slave Double-click to en	mort [clk]	= 0x0400 00a0	0x0400 00a7				- 1
niversity Program				ins	Interrunt Sender	Double-click to a	mort [clk]	10000000000000000000000000000000000000	0.000 C C C C C C C C C C C C C C C C C				- 1
					On-Chin Memory (RA	M or POM)	(port ford			_			
		×.			Clock Input	Double office to a	and and adapt						
			TIT	UKL	Clock input	Double-Cock to to	sys_sura						
				51	Avaion Memory Mapp	Ded Slave	[CIKI]	- 0x0400_1000	0x0400_1III				
				reseti	Reset Input	Double-cark to es	(DOVE [CK1]			_			
				비별 Jtag	master JI AG to Avaion Maste	er Bridge							
		1000	1	clk	Clock Input	Double-click to es	port sys_sdra						
			+++	clk_re	Reset Input	Double-click to es							
				maste	Avalon Memory Mapp	bed Master Double-click to ex	cport [clk]						- 1
and an and a second sec	(Transmission)		$ \rightarrow$	maste	_reset Reset Output	Double-click to es	iport						
Eda	🗣 Add			🗉 sdram	SDRAM Controller								
		3.6	+ +	clk	Clock Input	Double-click to es	sys_sdra			-			
rarchy II Device Family 32			++++	reset	Reset Input	Double-click to es	coort [clk]			sdram	1		
adicity of Device running of					Avalon Memory Mapo	ped Slave Double-click to es	port [clk]	♦ 0x0000 0000	0x03ff ffff	SDR4	AM Controller faltera	avalon new sdram or	ontro
#2	~			0.0 wire	Conduit	sdram				0010	un controller junero,		Unite
3k				E her 0	PID (Parallel I/O)					_			_
iex_0				d nex_o	Clock Input	Daubla click to a	and and adea						
lex_1			TTTT	Cik Cik	Clock Input	Double click to e	Sys_sura						
ex_2			TTT	reset	Neset Input	Double-CACK LD es	Colk)	A	0				
ex_3				51	Avaion memory mapp	Ded Sidve	Chours Tcikl	 0x0400_0100 	080400_0101				
lex_4				extern	al_connection Conduit	hex_0				_		-	_
ed 0				⊡ hex_1	PIO (Parallel I/O)								
ed 1			1	clk	Clock Input		sys_sdra						
ed_1				and a second	Basat Input	Couble slish to a	E-lb3						
ed 3		Shr f	t 🍸 🐩 Curr	ent filter: All Interfa	es .								
ed 4			100										
ed 5		GE Messi	ages as										- 24
ed 6			Death										
ed 7		type	Path	message									
2040 A			a strendered										

Fig. 5. Typical Qsys design example. Bold dots are connections. Parts under the "Name" column are hardware parts of the design

The Qsys allows the designer selecting the desired components by a menu and connecting them. The design is then automatically generated as HDL file and then can be added to the main project in Quartus.

Volume – 3, Issue – 5 September – 2017

The Qsys tool allows designing ES including either the Nios II soft processor [3], which is implemented inside the FPGA through its description in HDL code, or the hard processor, named HPS [4], also integrated on the FPGA chip and based on the Arm-Cortex architecture.

Another very useful component available in the Qsys menu is the JTAG Debug module. It allows the communication between the designed system and a host computer making also possible actions as loading a program into the on-board memory, debugging the software part of the designed ES using breakpoints arbitrarily placed at any instruction of the program, editing and reading the contents of memories and registers identified by their hexadecimal address.

A network of Avalon switch fabric called interconnection automatically generated by the Qsys tool provides the right connections between the hardware components.

The instruction memory is a Random-Access Memory (RAM) integrated into the FPGA chip.

Finally, another very useful component is the JTAG UART interface. It is useful to connect to USB-Blaster system that enables the connection between the evaluation board and a personal computer (PC). In this design, the evaluation board used is the DE1_SoC by Terasic mounting the Cyclone V 5CSEMA5F31C6 FPGA by Altera.

👱 🗈 🔒	🔉 🔗 🖪	🕨 III 🕼 🔥	१ 🖑						
Disassembly			-	. ×					
Goto instruction	Address (hex) or symbol nam	e: <u>G</u> o H	ide					
0x00000374	DFC00115	stw	ra, 4(sp)						
0x00000378	2021883A	add	rl6, r4, zero						
0x0000037C	00003680	call	0x000000DA (0x00000368:fake_fini)						
0x00000380	8005883A	add	r2, r16, zero						
0x00000384	003FFF06	br	-0x4 (0x00000384)						
0x00000388	DFC00117	ldw	ra, 4(sp)						
0x0000038C	DC000017	ldw	r16, 0(sp)						
0x00000390	DEC00204	addi	sp, sp, 0x8						
0x00000394	F800283A	ret							
		volatil	e short int * leds_ptr = (short int *) LED:	S;					
		volatile short int * switches_ptr = (short int *) SWIT							
				**					
		while (1)						
		{							
		*1e	ds_ptr = *switches_ptr;						
0000000000	01000404	main:	-1						
0x00000398	01080404	addi	r4, zero, 0x2010						
0x00000390	00080004	addi	r3, zero, 0x2000						
0x000003A0	2000002B		r2, 0(r4)						
0x000003A4	10000020	SUILO	-0x6 (0x00000330)						
0X000003A8	00311008	br	-0xc (0x000003A0)						
		#include /a	this by						
		#Include <8	COLO . IL>						
		#ifdef JTA	G UART BASE	-					
•									
Dissessmbly	Preakpoints /	Memory / Wata	ther Trace						
Disassembly	breakpoints /	water water	ines (inace)						

Fig. 6. Typical view of the AMP with a breakpoint marked by a bold dot on the left margin

(IJA-ERA)

C. Altera Monitor Program

Another very useful facility provided by Altera within the University Program is the "Altera Monitor Program" (AMP) [12]. This tool allows building, assembling, downloading and debugging the software part of the ES into the FPGA processor (Nios II, the soft processor, and HPS the hard processor).

Fig. 6 shows a typical view of the AMP debugging a program running on the Nios II soft processor. Further details about the AMP are in the following "Results" section.

III. DESCRIPTION OF THE DESIGNED EMBEDDED SYSTEM

The problem addressed in this paper is to perform a quick and reliable loading of data coming from a multichannel source into the FPGA I/O memory mapped devices for further processing steps. A typical example, as already stated, is the ECG signal coming from a number of channels ranging from 3 to 15.

To load such data into the SRAM memory and make them available to the FPGA for the proper processing steps, it is possible to follow a fully hardware or a mixed hardware/software approach.

A. Hardware data loading

The fully hardware approach consists in using signals of the SRAM controller properly synchronized with the clock signal driving the other parts of the circuit, and a number of digital sub-circuits, logic gates and registers, as figures 7-9 show.

In fig. 7, there are four main blocks. The first block is clock_gen and is enabled by the signal named ck_enable. This first block generates a clock signal having the desired frequency (1 Khz in this case, i.e. the sampling frequency) starting from the main clock available in the circuit (for example a 50 Mhz clock supplied by the DE1_SoC evaluation board).

Fig. 7. Example of a circuit for the hardware data loading of a multichannel (10) signal into the onchip memory

The second block is sram and is the controller of the SRAM memory chip where data are stored and made ready for loading and processing by the FPGA. This second block serially provides data to the next block (called parallel) as 16-bit output bus named "signal [15..0]". Therefore, this output bus

Volume – 3, Issue – 5 September – 2017

(IJA-ERA)

drives data of all channels serially towards the block parallel. This means that data coming from all channels are sent in sequence: the first sample (16 bit) for each channel, then the second sample (16 bit) for each channel, and so on.

At this stage, the just mentioned third block parallel that receives data as serial input (16 bit per sample) conveys them in parallel multiple output, restoring the multichannel data in the right size and format and making them ready for processing.

Finally, the last block, called vlp_detection, is properly a processing section designed and implemented into the FPGA.

The signal w1_r0, coming as output from the SRAM controller, allows to enable the next step, i.e. the data processing, only if all data are loaded and ready to be processed. Fig. 8 shows the detail of the SRAM block.

Fig. 8. Detailed schematic of the SRAM block

The data flow is controlled by the flip flop JKFF, the lpm_counter3 and the lpm_compare10: lpm_counter3 increments the "SRAM_ADDR [17..0]" output every clock pulse, so the output "signal [15..0]" presents the corresponding value in the SRAM memory every clock pulse. When the empty pin is high, the JKFF enables the counter and tells the w1_r0 pin that the block is reading from the SRAM. When the full pin is high, the JKFF stops the counter and pauses the reading. The lpm_compare10 stops the data flow all data have been read. The reset pin resets the counter so the reading will restart from the beginning of the SRAM.

Fig. 9 shows the detail of the parallel block. It acts as a buffer between the SRAM containing data and the processing circuit, granting the synchronism and the right restoring in size and format of the multichannel data. Pins full and empty drive the sram block to pause and resume the data flow respectively. The decoder is needed to load data into the respective "First In First Out" (FIFO) registers, enabling the right one at the right time for each channel. The w1_r0 signal is high when the sram is providing data, and it sets all the FIFOs in write mode. When it is low, all the FIFOs are in read mode. The other signals in schematics in figures 7-8-9 not mentioned above are useful only for debug purposes.

Fig. 9. Detailed schematic of the block called parallel

Data to be loaded are previously stored in a .bin file and then transferred into the SRAM chip available on the evaluation board by a proper software utility developed by the author as a Graphical User Interface (GUI) in Matlab environment that will be detailed in [13].

This hardware approach is not so reliable because of the high risk of mismatching between signals and the clock running along the various parts of the circuit, due to the wide use of counters, comparators, decoders and FIFO registers to be properly synchronized. This involves considerable design difficulties and optimizations needs, and consequently high probability of fault risks. Moreover, it is very hard a deep debug of the designed system, especially to verify that data have been successfully loaded and properly structured in the output FIFOs.

B. Software/Hardware data loading: the proposed embedded system

To address and solve the problems typical of the fully hardware design, the solution adopted is to

Volume – 3, Issue – 5 September – 2017

design an ES controlled by the Nios II processor with a fair reduction of the hardware employed. This approach significantly reduces the fault risks also making it easy a deep debug of the data loading.

Fig. 10 shows the schematic of the hardware part of the designed ES.

Fig. 10. The embedded system designed to optimize the data loading from a multichannel source

There are two main parts in the design: the interface and the processing part. The filter bank and the vm block constitute the processing part of the ES and can change according to any processing specifications. In this paper, the processing part is purely demonstrative and designed for debug purposes only. In fact, in this paper, the focus is about the interface, which provides the data loading and reading by the FPGA for the next processing step, whatever it is.

Fig. 11 shows in detail the interface of the ES designed by the Qsys tool.

The Nios II component (in the "Description" column of fig. 11) is the soft processor available onto the FPGA chip and deals with the software task of the multichannel data loading.

The on-chip RAM is the instruction memory useful for the Nios II operations.

The JTAG UART submodule is necessary for the communication between the personal computer and the DE1_SoC evaluation board.

The SDRAM controller provides all signals necessary to manage and interface the data memory chip available on the DE1-SoC evaluation board. It has a capacity of 512 Mbits (64 Mbytes). The chip is organized into 4 banks from 8M half-word by 16 bits.

The pll component in fig. 11(a-c) is suitable to avoid the clock skew. The clock skew is a phenomenon that occurs in synchronous digital circuits in which the same clock source comes to the various components of the circuit at different times [14]. So, to avoid faults in the SDRAM performances due to the clock skew it is necessary that its clock signal, DRAM_CLK, to advance the system clock of the

Volume – 3, Issue – 5 September – 2017

Nios II of 3 nanoseconds. This is accomplished by using a phase-locked loop circuit (PLL). The Parallel I/O (PIO) denominated pio_0, pio_1 and so on, up to pio_14, are the 15 registers containing the bits of the samples to be processed.

Use	Connections	Name	Description	Export	Clock	Base	End	IRQ
		⊟ clk	Clock Source	1				
		- dk_in - dk_in_reset < dk	Clock Input Reset Input Clock Output	clk reset Double-clic	<i>exported</i> clk			
		<pre>cik_reset cik_reset_n cik cik cik cik cik cik cik cik cik cik</pre>	Nios II (Classic) Processor Clock Input Reset Input Avalon Memory Mapped Master Avalon Memory Mapped Master Interrupt Receiver Reset Output Avalon Memory Mapped Slave	Double-clic Double-clic Double-clic Double-clic Double-clic Double-clic Double-clic Double-clic	cik [dk] [dk] [dk] [dk] [dk] [dk]	IRQ 0 # 0x400_0800	IRQ 31 0x400_0fff	ب
	• • • • • • • • • • • • • • • • • • •	custom_instruction_master memory dk1 s1	Custom Instruction Master On-Chip Memory (RAM or ROM) Clock Input Avalon Memory Mapped Slave	Double-clic Double-clic Double-clic	cik [cik1]	● 0×400_1000	0x400_1fff	
		 reset1 jtag_uart dk reset avalon_jtag_slave 	ITAG UART Clock Input Reset Input Avalon Memory Mapped Slave	Double-clic Double-clic Double-clic	[cik1] cik [cik] [cik]	₩ 0x400_3000	0x400_3007	
		<pre>irq sdram_ctrl dk reset s1</pre>	Interrupt Sender SDRAM Controller Clock Input Reset Input Avalon Memory Mapped Slave	Double-clic Double-clic Double-clic Double-clic	[dk] clk [dk] [dk]	₽ 0x0	0x3ff_fff	≻ –5
		wire pl refdk reset outrik0	Altera PLL Clock Input Reset Input Clock Quitnut	Double-clic	cik			
		pio_in dk reset s1	PIO (Parallel I/O) Clock Input Reset Input Avalon Memory Mapped Slave	Double-clic Double-clic Double-clic	cik [dk] [dk]	● 0×400_2100	0x400_210f	
		cxternal_connection cxternal_connection cxternal_connection cxternal_connection	PIO (Parallel I/O) Clock Input Reset Input Avalon Memory Mapped Slave Conduit	Double-clic Double-clic Double-clic Double-clic out_clk	cik [cik] [cik]	● 0x400_20f0	0x400_20ff	

Fig. 11 (a). Embedded System design view in the Qsys tool

The PIO called out_clk provides a clock signal for the next stage of processing, so that it is synchronized with the loading of samples on the registers.

Finally, the register "pio_in" is for debug purposes only. It serves to read the output data from the processing block vm and to verify that it is consistent with the result expected from the MATLAB model of the designed system, developed for debug purposes and described later.

Volume – 3, Issue – 5 September – 2017

Fig. 11 (b). Embedded System design view in the Qsys tool

The base addresses of all the memory mapped I/O devices are fixed by the designer by the Qsys to easily address them for read/write operations.

The multichannel signal used to test the loading performances of the designed system is a 15-leads ECG signal. Therefore, the first submodule of processing in fig.10 is a filter bank. It performs a bandpass filtering on the 15-leads ECG signal. The filter used is a fourth-order Butterworth type, with cut-off frequencies of 25 and 300 Hz.

The further processing submodule is called "vm" and it performs the calculation of the Vector Magnitude (VM) on the 15 leads of the ECG signal.

Both processing steps on the data loaded are performed by the FPGA.

The software part of the designed ES is written in C language and runs on the Nios II soft processor.

It allows the Nios II reading binary data from the on-board SDRAM memory and make them available in the right structured form into memory-mapped registers (the 15 PIOs) ordered according to their multichannel nature. So, allowing the FPGA correctly reading for the subsequent processing steps. Data are loaded into the on-board SDRAM by means of the software GUI mentioned above [13].

Volume – 3, Issue – 5 September – 2017

Fig. 11 (c). Embedded System design view in the Qsys tool

The instruction list of the C code is:

```
#define PIO_BASE_00 0x4002000
#define PIO_BASE_01 0x4002010
#define PIO_BASE_02 0x4002020
#define PIO_BASE_03 0x4002030
#define PIO_BASE_04 0x4002040
#define PIO_BASE_05 0x4002050
#define PIO_BASE_06 0x4002060
#define PIO_BASE_08 0x4002080
#define PIO_BASE_09 0x4002090
#define PIO_BASE_10 0x4002040
#define PIO_BASE_11 0x4002040
```

```
#define PIO_BASE_13 0x40020d0
#define PIO_BASE_14 0x40020e0
#define OUT_CLK_BASE 0x40020f0
#define SDRAM_BASE 0x0
#define SDRAM_END 0x3ffffff
#define END_WORD 0x7fff
int main (void)
{
    volatile short int* pio_00_ptr = (short int*)
PIO_BASE_00;
    volatile short int* pio_01_ptr = (short int*)
PIO_BASE_01;
volatile short int* pio_02_ptr = (short int*)
PIO_BASE_02;
```

Volume – 3, Issue – 5 September – 2017

volatile short int* pio 03 ptr = (short int*) PIO_BASE_03; volatile short int* pio 04 ptr = (short int*) PIO_BASE_04; volatile short int* pio 05 ptr = (short int*)PIO_BASE_05; volatile short int* pio 06 ptr = (short int*)PIO_BASE_06; volatile short int* pio_07_ptr = (short int*) PIO_BASE_07; volatile short int* pio_08_ptr = (short int*) PIO BASE 08; volatile short int* pio 09 ptr = (short int*) PIO BASE 09: volatile short int* pio_10_ptr = (short int*) PIO_BASE_10; volatile short int* pio 11 ptr = (short int*) PIO BASE 11; volatile short int* pio_12_ptr = (short int*) PIO BASE 12; volatile short int* pio_13_ptr = (short int*) PIO BASE 13; volatile short int* pio_14_ptr = (short int*) PIO_BASE_14; volatile short int* out clk ptr = (short int*) OUT_CLK_BASE; volatile short int* sdram ptr = (short int*)SDRAM_BASE; volatile int delay_count; while(*sdram ptr != END WORD && sdram_ptr < SDRAM_END) { *out_clk_ptr = 0; for(delay_count = 5000000; delay_count! = 0;--delay count); *pio_00_ptr = *sdram_ptr; $sdram_ptr = sdram_ptr + 0x1;$ *pio_01_ptr = *sdram_ptr;

sdram ptr = sdram ptr + 0x1; *pio_02_ptr = *sdram_ptr; sdram ptr = sdram ptr + 0x1;*pio_03_ptr = *sdram_ptr; sdram ptr = sdram ptr + 0x1;*pio_04_ptr = *sdram_ptr; sdram ptr = sdram ptr + 0x1;*pio_05_ptr = *sdram_ptr; $sdram_ptr = sdram_ptr + 0x1;$ *pio_06_ptr = *sdram_ptr; $sdram_ptr = sdram_ptr + 0x1;$ *pio 07 ptr = *sdram ptr; sdram ptr = sdram ptr + 0x1;*pio_08_ptr = *sdram_ptr; $sdram_ptr = sdram_ptr + 0x1;$ *pio_09_ptr = *sdram_ptr; sdram ptr = sdram ptr + 0x1;*pio 10 ptr = *sdram ptr; $sdram_ptr = sdram_ptr + 0x1;$ *pio_11_ptr = *sdram_ptr; $sdram_ptr = sdram_ptr + 0x1;$ *pio 12 ptr = *sdram ptr; $sdram_ptr = sdram_ptr + 0x1;$ *pio_13_ptr = *sdram_ptr; $sdram_ptr = sdram_ptr + 0x1;$ *pio_14_ptr = *sdram_ptr; sdram ptr = sdram ptr + 0x1;for(delay_count = 5000000; delay_count != 0; --delay count); *out_clk_ptr = 1; for(delay_count = 10000000; delay_count != 0; --delay_count); $pio_08_ptr = 0;$

}	*pio_09_ptr = 0;
*pio_00_ptr = 0;	*pio_10_ptr = 0;
*pio_01_ptr = 0;	*pio_11_ptr = 0;
*pio_02_ptr = 0;	*pio_12_ptr = 0;
*pio_03_ptr = 0;	*pio_13_ptr = 0;
*pio_04_ptr = 0;	*pio_14_ptr = 0;
*pio_05_ptr = 0;	while(1);
*pio_06_ptr = 0;	}
*pio 07 ptr = 0:	

In the first few lines of the code, there are the constant statements that indicate the base addresses of the used memory components, the SDRAM and the PIO (I/O memory mapped devices). They are the same addresses fixed by the Qsys design tool. There is also the declaration of the endword useful to end the data loading operations.

Inside the "main" function they are instantiated pointers as "short int" type to which the values of the constants defined above are assigned. These pointers allow the memory access according to the addresses they point to. The type "short int" is because of the width of both of them the SDRAM memory cells and of the PIO is 2 bytes (1 half-word). The "out_clk" signal is 1 bit wide and then still does not exceed the short int representation. The integer variable "delay_count" is also used in the delay loop: it is set as "volatile" type because otherwise the compiler eliminates the loop.

The condition of the next "while" control statement is that the loop is repeated until the pointer to the SDRAM does not reach the end-memory address, or until the variable to be pointed it is not the endword. Until the occurrence of one of these two conditions, the instructions within the loop cycle.

The loop begins by set at 0 the out_clk signal. Then it follows a delay loop to ensure that the negative clock edge reaches all the synchronous elements of the circuit. Then, the Nios II processor reads data from the SDRAM pointed cell and writes them into the first PIO. Therefore, the pointer to the SDRAM is increased by 1 in order to point to the next memory cell. These operations repeat for all 15 PIO registers.

Then, there is another delay loop to ensure the data settling in the PIO registers before the out_clk signal switches to 1, generating the rising edge of the clock signal starting the subsequent processing step.

Finally, after another delay loop terminates the main loop. The length of the delay loops was chosen to ensure that the clock driving the processing steps, i. e. the out_clock signal, has a duty cycle of about 50%.

After the end of the cycle, the PIO are reset, i.e. their content is set equal to 0. The last line contains a while loop with condition 1, meaning that the program stops on this instruction, stopping the samples loading.

This code runs on the Nios II soft processor, as already stated.

IV. RESULTS

The author has developed a Matlab model for debug purposes. The model includes the signal processing steps implemented in the FPGA, also. The test signal is a high resolution multichannel (15-

(IJA-ERA)

leads) ECG signal, characterized by a 1 kHz sample rate, 16-bit resolution with 0.5 microvolts/LSB, lasting about 2 minutes. Data are firstly stored in a MATLAB matrix, called "B", which dimensions are 115000x15. Then, it has been created a binary (B.bin) file with the B matrix using the following Matlab commands:

id = fopen('B.bin', 'w');

fwrite(id, B, 'int16');

fclose(id);

The creation of the binary file is a necessary step in order to load data in a binary format on the SDRAM chip available in the DE1_SoC evaluation board mounting the FPGA.

The loading of the B.bin file into the SDRAM, can be performed either by the Altera Monitor Program or by a loading utility developed by the author [13].

The filtering has been implemented in Matlab using the biquad function together with the filtbiq function [14]. The VM calculation has been implemented developing a user-defined Matlab function according to its definition [15].

Moreover, together with the Matlab model and the B.bin file, it has been created a project into the Altera Monitor Program (AMP) in order to program the FPGA, compile and load the C code into the instruction memory of the Nios II processor.

Creating the project in the AMP it is necessary to select the architecture Nios II. Then, choose to use a custom system by selecting the. sopcinfo and .sof files coming from the Quartus compilation of the hardware part of the designed ES (see Figs. 10-11). Then, select the program in C (or assembly if that). Finally, boot on the board, compile the program and load it into processor instruction memory.

To start the debug, you can go in the disassembly screen to put the breakpoint in correspondence of the instruction 0x400145C, at the beginning of the while loop where the out_clk signal is equal to 0. The situation is as Fig. 12 shows.

Then, the binary data stored in the B.bin file are loaded into the SRAM memory by the AMP facility "Load file into memory" and then managed by the Nios II processor to make data available for the FPGA processing in the right structure.

Fig. 13 shows the debug result of the data loading into SRAM chip on the DE1_SoC evaluation board.

Any memory location (address) has its own sample value read by the AMP in the half-word (2 bytes), decimal, signed numbers format. Then, the Nios II processor loads these data into the PIO registers according to their original multichannel nature, making them available for the FPGA processing operations. To this aim, it is necessary to start the execution of the C code described above, compiled and loaded on the Nios II processor instruction memory by the AMP facilities. It is easy to verify that before starting the program, the status of the PIO registers is 0, as expected because of no data have been still loaded until the Nios II does not act, as Fig. 14 shows.

To evaluate the status of the PIO by the AMP it is necessary to move the view for the memory addresses related to the PIO's, i.e. beginning from the memory address 0x4002000. This can be done with the function "Goto address" remembering to select the Query option Memory Mapped Devices into the AMP options (see fig. 14).

Disassembly			_ ×
Goto instruction	Address (hex)	or symbol name: Go	Hide
0x04001450 0x04001454	01802674 31A5A004	<pre>for (delay_count = 10000000; delay_count != 0;dela orhi r6, zero, 0x99 addi r6, r6, -0x6980 volatile short int * out_clk_ptr = (short int *) OUT_ volatile short int * sdram_ptr = (short int *) SDR</pre>	y_count); // Delay 1 CLK_BASE; AM_BASE;
		volatile int delay_count;	// Variabile
0x04001458	00003A06	<pre>while(*sdram_ptr != END_WORD && sdram_ptr < SDRAM_END) br 0xE8 (0x04001544) {</pre>	// FinchÃ" :
0x0400145C	2800002D	<pre>*out_clk_ptr = 0; sthio zero, 0(r5)</pre>	// Metto ad
		for (delay count = 5000000; delay count != 0;delay	count); // Delay lo
0x04001460 0x04001464 0x04001468 0x0400146C 0x04001470 0x04001474 0x04001478 0x0400147C	D9000035 D8800037 10000526 D8800037 10BFFFC4 D8800035 D8800037 103FFB1E	<pre>stvio r4, 0(sp) ldwio r2, 0(sp) beq r2, zero, 0x14 (0x04001480) ldwio r2, 0(sp) addi r2, r2, -0x1 stvio r2, 0(sp) ldwio r2, 0(sp) bme r2, zero, -0x14 (0x0400146C) *pio_00_ptr = *sdram_ptr;</pre>	// Legge il ▼
•			
Disassembly (E	Breakpoints /	Memory / Watches / Trace /	

Fig. 12. The disassembly screen of the Altera Monitor Program for a debug step-by step using breakpoints.

At this stage, it is possible to launch the program on Nios II and execute it in the "step-by step" mode for a deep debug purpose, with the "Continue" command to go from one instruction to the subsequent one. Thanks to the breakpoint set, the program stops at the beginning of each read cycle, allowing observing in the memory window the value of the samples loaded on the PIO, in correspondence of the addresses between 0x4002000 and 0x40020E0.

At the memory address 0x40020F0, the value of the out_clk signal is observable, which at the breakpoint is always 1. At the address 0x4002100, is instead observed the value of the output sample from the module that calculates the VM.

Continuing the program execution, it always stops on the same instruction allowing observing the new values loaded into the PIO and into the VM registers.

The samples loaded on the PIO perfectly match the numerical values in the columns of the B matrix in MATLAB, as fig. 15a and fig. 15b show. Therefore, it is verified the correctness of the design and of the loading task. The little mismatching between the VM values calculated by the Matlab model (fig. 16) and those calculated by the FPGA is not significant and is due to the different processing methods.

Memory _ ×											
Goto address (hex):		<u>G</u> o 🗌 Que	ry Memor	y Mapped I	Devices				[Refresh	Hide
164-		+0x0		+0x4		+0x8		+0xc			-
Load file Hide	0x00000000	225	-1639	-1865	707	1045	-1752	204	849		
Select a file: Browse	0x00000010	1781	1036	-33	840	36	-849	-231	216		
<u>o</u> romocial	0x00000020	-1642	-1859	713	1039	-1751	200	835	1770		
<pre>>\OneDrive_Tesi\matlab\B.bin</pre>	0x00000030	1026	-39	837	32	-847	-229	212	-1651		
File type: Binary format	0x00000040	-1863	720	1038	-1757	196	825	1757	1018		
	0x00000050	-44	830	28	-857	-225	211	-1660	-1871		
Start address (hex): 0	0x00000060	724	1041	-1766	198	816	1745	1017	-49		
Load	0x00000070	823	19	-873	-219	205	-1670	-1875	732		
Food	0x00000080	1040	-1772	203	804	1727	1007	-60	811		
	0x00000090	6	-876	-207	205	-1683	-1888	739	1047		- 1
	0x000000A0	-1786	204	794	1716	996	-63	805	-3		- 1
	0x000000B0	-889	-195	203	-1694	-1896	745	1050	-1795		2
	0x000000C0	203	782	1704	987	-67	798	-9	-893		2
	0x000000D0	-189	200	-1702	-1902	750	1052	-1802	199		- 1
	0x000000E0	767	1687	973	-77	792	-18	-897	-184		- 1
	0x000000F0	196	-1714	-1909	759	1053	-1812	197	758		- 1
	0x00000100	1672	962	-90	782	-29	-901	-175	194		- 1
	0x00000110	-1722	-1916	764	1055	-1819	195	744	1651		- 1
	0x00000120	948	-104	766	-42	-908	-174	199	-1729		- 1
	0x00000130	-1928	764	1064	-1828	197	731	1634	932		- 1
	0x00000140	-116	750	-55	-922	-171	191	-1739	-1930		- 1
	0x00000150	773	1061	-1835	201	721	1618	918	-126		
	0x00000160	734	-70	-926	-160	174	-1759	-1933	792		
	0x00000170	1054	-1846	200	706	1597	898	-142	717		
	0x00000180	-86	-948	-158	160	-1788	-1948	814	1055		
											•
Disassembly / Breakpoints /	Memory / Wat	ches / Trace	•								

Fig. 13. Result of the data loading by the B.bin file into on-board SRAM. Data are stored into the memory locations and are ready to be managed by the Nios II processor for the subsequent processing steps by the FPGA:

Memory	Memory _ ×										
Goto address (hex):	4002000	Go 🗹 Query N	Memory I	Mapped Dev	ices				Refres	h Hide	
]	+0x0		+0x4		+0x8	+	-0xc		-	
Load file Hide	0x04002000	0	0	0	0	0	0	0	0		
Select a file: Browse	0x04002010	0	0	0	0	0	0	0	0		
<u>provident</u>	0x04002020	0	0	0	0	0	0	0	0		
<pre>>\OneDrive_Tesi\matlab\B.bin</pre>	0x04002030	0	0	0	0	0	0	0	0		
File type: Binary format	0x04002040	0	0	0	0	0	0	0	0		
	0x04002050	0	0	0	0	0	0	0	0		
Start address (hex): 0	0x04002060	0	0	0	0	0	0	0	0		
Load	0x04002070	0	0	0	0	0	0	0	0		
	0x04002080	0	0	0	0	0	0	0	0		
	0x04002090	0	0	0	0	0	0	0	0		
	0x040020A0	0	0	0	0	0	0	0	0		
	0x040020B0	0	0	0	0	0	0	0	0	222	
	0x040020C0	0	0	0	0	0	0	0	0	1000	
	0x040020D0	0	0	0	0	0	0	0	0		
	0x040020E0	0	0	0	0	0	0	0	0		
	0x040020F0	0	0	0	0	0	0	0	0		
	0x04002100	0	0	0	0	0	0	0	0		
	0x04002110	2	2	?	?	2	2	?	?		
	0x04002120	2	2	2	2	2	2	2	?		
	0x04002130	2	2	2	2	2	2	2	?		
	0x04002140	2	2	2	2	2	2	2	2		
	0x04002150	2	2	?	2	2	2	2	?		
	0x04002160	2	2	2	2	2	2	2	2		
	0x04002170	2	2	2	7	2	2	2	7		
	0x04002180	2	7	2	7	2	7	2	7		
•											
Disassembly Breakpoints	Memory Wate	ches / Trace /									

Fig. 14. The PIO are reset to 0 until the Nios II does not operate.

(IJA-ERA)

Volume – 3, Issue – 5 September – 2017

V. CONCLUSIONS

In this paper, it has been described an ES useful for a reliable loading of data coming from a multichannel signal into a FPGA for DSP purposes. The design has been compared with another one developed according to a fully hardware approach and it has been clearly addressed the significant reduction of fault risks following a mixed hardware/software approach, i.e. using an ES. Moreover, the design has been tested and successfully validated using the AMP. The conclusion is that the designed ES allows a reliable multichannel data loading for the FPGA processing being also the system quite simple and strongly reliable both of them in its software and hardware parts. The next step is to develop all the DSP chain in order to process the signal according to any specifications.

	+0x0		+0x0		+0x0
0x04002000	225	0x04002000	216	0x04002000	212
0x04002010	-1639	0x04002010	-1642	0x04002010	-165
0x04002020	-1865	0x04002020	-1859	0x04002020	-1863
0x04002030	707	0x04002030	713	0x04002030	72
0x04002040	1045	0x04002040	1039	0x04002040	103
0x04002050	-1752	0x04002050	-1751	0x04002050	-175
0x04002060	204	0x04002060	200	0x04002060	19
0x04002070	849	0x04002070	835	0x04002070	82
0x04002080	1781	0x04002080	1770	0x04002080	175
0x04002090	1036	0x04002090	1026	0x04002090	101
0x040020A0	-33	0x040020A0	-39	0x040020A0	-4
0x040020B0	840	0x040020B0	837	0x040020B0	83
0x040020C0	36	0x040020C0	32	0x040020C0	2
0x040020D0	-849	0x040020D0	-847	0x040020D0	-85
0x040020E0	-231	0x040020E0	-229	0x040020E0	-22
0x040020F0	1	0x040020F0	1	0x040020F0	
0x04002100	0	0x04002100	0	0x04002100	104
	+0X0		+UXU		
0x04002000	211	0x04002000	205		
0x04002010	-1660	0x04002010	-1670		
0x04002020	-1871	0x04002020	-1875		
0x04002030	724	0x04002030	732		
0x04002040	1041	0x04002040	1040		
0x04002050	-1766	0x04002050	-1772		
0x04002060	198	0x04002060	203		
0x04002070	810	0x04002070	804		
0x04002080	1/45	0x04002080	1727		
0x04002090	1017	0x04002090	1007		
0x040020A0	-49	0x040020A0	-60		
0×04002080	10	0x04002060	611		
0×04002000	-973	0x04002000	-876		
0×04002000	-073	0x04002000	-207		
0x040020E0	-219	0x040020E0	-207		
0x040020F0	2560	0x040020F0	2217		
0704002100	2000	0004002100]	

Fig. 15a. Data loaded by the Nios II after 5 cycles into the PIO registers, read from the FPGA for processing next steps.

Volume – 3, Issue – 5 September – 2017

	1	2	3	4	5
1	225	216	212	211	205
2	-1639	-1642	-1651	-1660	-1670
3	-1865	-1859	-1863	-1871	-1875
4	707	713	720	724	732
5	1045	1039	1038	1041	1040
6	-1752	-1751	-1757	-1766	-1772
7	204	200	196	198	203
8	849	835	825	816	804
9	1781	1770	1757	1745	1727
10	1036	1026	1018	1017	1007
11	-33	-39	-44	-49	-60
12	840	837	830	823	811
13	36	32	28	19	6
14	-849	-847	-857	-873	-876
15	-231	-229	-225	-219	-207

Fig. 15b. Data stored into the B.bin binary data file, read in Matlab. There are exactly as in fig. 15a meaning the correct data loading operation by the Nios II processor.

	1	2	3	4	5
1	1041	2560	2216	1170	864

Fig. 16. Vector magnitude calculated in Matlab matches enough that calculated by the FPGA processing data loaded, stored in the register which address is 0x4002100. The little mismatching is not significant and because of different processing methods.

Conflict of interest: The author declares that he has no conflict of interest.

Ethical statement: The author declares that he has followed ethical responsibilities.

REFERENCES

- A. Giorgio, "Dispositivi Logici Programmabili" in Lezioni di Fondamenti di Elettronica dei Sistemi Digitali, 1st ed, Roma Italy, Gruppo Ed. L'Espresso, 2016, pp. 251-270
- [2] C. Brandolese, W. Fornaciari, "Tecnologie Hardware" in Sistemi Embedded, 1st ed., Milano Italy, Pearson Prentice Hall, 2007, pp. 163-181
- [3] Intel Corporation (February 2017), Altera, Nios II processor, Available: https://www.altera.com/products/processors/overview.html
- [4] Altera Corporation (February 2012), SoC FPGA ARM Cortex A9 MPCore Processor Advance Information Brief. Available: https://people.ece.cornell.edu/land/courses/ece5760/DE1_SOC/aib-01020soc-fpga-cortex-a9-processor.pdf
- [5] M. J. S. Smith, (November, 14, 2004), Addison Wesley, [online] Available: https://archive.org/stream/ApplicationSpecificIntegratedCircuitsAddisonWesleyMichaelJohnSebastianSmit h/Application-Specific%20Integrated%20Circuits%20-

%20Addison%20Wesley%20Michael%20John%20Sebastian%20Smith#page/n0/mode/2up

[6] S. Brown, Z. Vranesic, (2009), Fundamentals of Digital Logic with VHDL Design (3rd ed.), McGrawHill, [online] Available: https://archive.kottnet.net/Academic-Life/KTH/Fundamentals%200f%20Digital%20Logic%20With%20VHDL%20Design%203rd%20Edition.p df

Volume – 3, Issue – 5

September – 2017

- [7] S. Palnitkar, (March, 3, 2003), Verilog HDL: A Guide to Design and Sinthesys (2nd ed.), Prentice Hall, [online] Available the 1st ed.: http://www.lapps.com/electronicsengg/books/Verilog%20HDL%20-%20Samir%20Palnitkar.pdf
- [8] P. Marwedel, (2011), Embedded Systems Design, (1st ed.), Springer Science
- [9] Altera Corporation (2016), Software Download Available: *https://www.altera.com/downloads/download-center.html*
- [10] Xilinix Corporation (2016), Software Download Available: https://www.xilinx.com/support/download.html
- [11] A. Giorgio, "A miniaturized medical device for health monitoring and teleassistance applications", Int. Jour. Of Bioinf. Research, vol. 4, no. 1, p. 258-262, April 2012, ISSN: 0975-3087
- [12] Altera Corporation (2016), Embedded Systems Training Tutorials, Available: https://www.altera.com/support/training/university/material_embedded_systems.html
- [13] A. Giorgio, "Interfacing FPGAs with Matlab using JTAG", unpublished
- [14] The Mathworks (2017), Biquad Filter, Available: https://it.mathworks.com/help/dsp/ref/biquadfilter.html?s_tid=srchtitle
- [15] A. Giorgio, "A Model for the Real Time Detection of Ventricular Late Potentials Oriented to Embedded Systems Implementation", Int. J. of Adv. Eng. Res. and App. (IJA-ERA) ISSN: 2454-2377, vol. 1, no. 12, pp. 500-511, April 2016.