
International Journal of Advanced Engineering Research and Applications (IJA-ERA) ISSN: 2454-2377

Volume – 3, Issue – 5, September – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 263

Using MATLAB Graphical User Interface for

Signal Acquisition and Stream Processing
Agostino Giorgio1* & Alessio Melibeo2

1&2Dipartimento di Ingegneria Elettrica e dell’Informazione – Politecnico di Bari – Digital Electronics Lab

(eledigilab), Via E. Orabona, 4 70125 Bari, ITALY

*Corresponding Author E-mail: agostino.giorgio@poliba.it

Abstract: In this paper, we will describe how to build a MATLAB Graphical User Interface (GUI) for Data

Acquisition from an arbitrary signal, and Stream Processing. The GUI allows easy data acquisition from

devices connected to the PC, stream processing (live visualization on virtual oscilloscope and storage into a

file), and playback over audio devices if it is an audio signal. The data exchange with signal sources was

achieved using the Data Acquisition Toolbox™, the stream processing with the DSP System Toolbox™,

and the creation of the Graphical User Interface with GUIDE™.

Keywords: Data Acquisition, DSP System Toolbox, Graphical User Interface, GUI, MATLAB

I. INTRODUCTION

This paper deals with the signal acquisition and processing using MATLAB® from The Mathworks, Inc,

used in many electronic fields (e.g. safety systems, motor vehicles, interplanetary spacecrafts, medical

devices, robot control, data acquisition and processing).

The aim is to learn basic concepts about the design of a GUI (Graphical User Interface) in Matlab

environment for:

a) data acquisition

b) data stream processing, especially

- real-time plot visualization of the acquired data;

- storage of the acquired samples into a text file;

c) post-processing operations

- data transmission over I/O devices;

- storage of the acquired data into a file.

Therefore, the focus is especially on three toolboxes of MATLAB:

a) Data Acquisition Toolbox™, for data exchange with external hardware;

b) DSP System Toolbox™, for stream processing;

c) GUIDE™, for the building of a Graphical User Interface (GUI).

II. DATA ACQUISITION TOOLBOX™: REMINDERS

Data Acquisition Toolbox™ [1] allows a bi-directional data exchange between MATLAB® and many Input

/ Output devices, such as USB, PCI, PXI devices from National Instruments, Digilent, DirectSound, and

Analog Devices.

In this section, we will describe the following features:

http://www.ijaera.org/
mailto:agostino.giorgio@poliba.it

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 5

September – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 264

- data acquisition from Input devices;

- data transmission over Output devices.

A. Building of a Session

The first thing we should do is to get a list of the acquisition hardware connected to the PC typing a daq.get

Devices command [2]:

B. Data acquisition

1) Add input channels

The first step to acquire data is to add input channels linked to the desired device. It is necessary to specify

the device ID, the channel ID and the measurement type

2) Acquisition start

After adding channels, we can really start the acquisition. We have 2 options:

- Foreground acquisition [6];

- Background acquisition [7].

a) Foreground acquisition

This is an exclusive priority task, which means that no other code line can be read in the meanwhile.

b) Background acquisition

The Foreground acquisition obviously does not allow a real-time control. For example, it is not possible to

show a live plot of the acquired data. Moreover, it exclusively occupies MATLAB®, which is a problem in

case of a great amount of data.

After adding a listener, the acquisition can start in 2 ways:

- limited acquisition;

- continuous acquisition.

C. Data transmission

1) Add output channels

The first step is again to add channels over which we want to send data:

2) Transmission Start

To start a transmission, we have to queue data (stored into a matrix) [12].

We have 2 transmission ways:

- Foreground transmission [13];

- Background transmission [14].

a) Foreground Transmission

During a Foreground data transmission, no other operation can be done.

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 5

September – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 265

b) Background Transmission

If we should do other operations in the meanwhile (e.g. stop the transmission) we need a Background

transmission.

D. Summary

In this sub-section, there are example codes and a table summarising the most significance commands and

their meaning.

1) Examples

a) Foreground audio data acquisition and transmission

This example code acquires audio data in Foreground from the Microphone for 6 seconds and then sends

data over the PC Speakers:

% Session setup

s=daq.createSession('directsound');

% Input channels

addAudioInputChannel(s,'Audio1',1:2);

% Acquisition duration

s.DurationInSeconds=6;

% The acquisition starts typing ‘1’

i=input('Press 1 to start recording\n');

if i==1

 disp('Starting...');

 % Data stored into a matrix ‘audio’

 audio=startForeground(s);

 disp('Done');

end

% The transmission starts typing ‘1’

i=input('Press 1 to play\n');

if i==1

 % Output channels

 addAudioOutputChannel(s,'Audio4',1:2);

 % Queue data

 s.queueOutputData(audio);

 disp('Starting...');

 % Foreground transmission

 startForeground(s);

 disp('Done');

end

b) Voltage data acquisition from the device NI 9205

The following example code [15] acquires a voltage sinusoid from the National Instruments device NI

9205, as fig. 1 shows:

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 5

September – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 266

% Session setup

s = daq.createSession('ni');

% Input channel

addAnalogInputChannel(s,'cDAQ1Mod1',0,'Voltage');

% Sampling rate and duration setting

s.Rate = 2000;

s.DurationInSeconds = 5;

% Listener for a real-time plot visualization

lh = addlistener(s,'DataAvailable',

 @(src,event) plot(event.TimeStamps,event.Data));

% Background acquisition

s.startBackground();

% Wait until the acquisition is complete

s.wait()

Fig. 1. Voltage sinusoid from NI 9205

Table of the most significant commands:

daq.createSession

Syntax s = daq.createSession(‘vendor’)

Description
Creation of an acquisition session to exchange data with a device from the

manufacturer vendor.

addAnalogInputChannel

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 5

September – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 267

Syntax
addAnalogInputChannel(s,devID,chID,

 measureType)

Description
Adds input channels (chID) to acquire measureType data from the device called

devID.

addAudioInputChannel

Syntax addAudioInputChannel(s,devID,chID)

Description Adds input channels (chID) to acquire audio data from the device called devID.

DurationInSeconds

Syntax s.DurationInSeconds = t

Description The session will run for t s.

Default Value 1 s

Rate

Syntax s.Rate = f

Description Sampling rate of f samples per second.

Default Value It depends on the acquired data type. An audio session, for example, acquires 44100

samples/s.

IsContinuous

Syntax s.IsContinuous = true/false

Description Defines if the acquisition is continuous or not.

Default Value false

addAnalogOutputChannel

Syntax
addAnalogOutputChannel(s,devID,chID,

 measureType)

Description
Adds output channels (chID) to transmitt measureType data over the device called

devID.

addAudioOutputChannel

Syntax addAudioOutputChannel(s,devID,chID)

Description Adds output channels (chID) to transmitt audio data over the device called devID.

queueOutputData

Syntax s.queueOutputData(data)

Description
Preliminar operation for data transmission: we add to the session s a matrix/array data

to send.

startForeground

Syntax startForeground(s)

Description Starts the Foreground operations for the session s.

startBackground

Syntax startBackground(s)

Description Starts the Background operations for the session s. Requires a listener.

addlistener

Syntax l=addlistener(s,event,@function)

Description Adds a listener to the session s which executes a function when an event occurs.

Wait

Syntax s.wait();

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 5

September – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 268

Description
It stops the reading of the following code lines until the Background session

operations are done.

Anonymous Function

Syntax @(src,event) % Operations

Description

It is defined into a listener. It needs 2 input variables:

src = the session which the listener is linked to;

event = structure with 3 fields:

Data, matrix MxN (num. of samples x num. of channels) with the incoming data;

TimeStamps, array Mx1 with all the sampling instants;

TriggerTime, absolute time of triggering.

III. DSP SYSTEM TOOLBOX™: REMINDERS

The DSP System Toolbox™ [16] is specialized in data Stream Processing [17].

A. Stream Processing

In many applications, it is required a live monitoring of data, so we need the Stream Processing procedure,

which means to:

- divide the incoming data into frames;

- acquire and store only a single frame at a time;

- process the acquired frame before the next one arrives.

Fig. 2 shows the scheme of the stream processing

Fig. 2. Stream-processing main scheme

Thus, the Stream Processing procedure allows a real-time control over the data. For example, we may want

a real-time plot visualization of the ECG of a patient. We can do that dividing the signal into packets and

visualize on screen one packet at a time.

In addition, there is an advantage in the memory usage: in fact, only a single frame is acquired and it is

fully processed before the next one arrives. In this way, only a small amount of data should be handled at a

time.

B. System Objects™

Stream Processing is possible thanks to System Objects™ [18], specialized functions included in the DSP

System Toolbox™ allowing many frame-by-frame operations, such as storage/reading of samples into/from

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 5

September – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 269

a text/audio file, or turning MATLAB® into a virtual oscilloscope for a real-time plot or a spectrum

visualization.

C. Example codes

1) Example n. 1

The following code imports an audio.mp3 file into a matrix called data, it stores the acquired data into an

audio.txt file and shows a real-time plot on a virtual oscilloscope (Fig. 3). Then, it reads the samples from

the audio.txt file and generates an audio.wav file:

% System Objects creation

AudioReader=dsp.AudioFileReader('Filename',

 'audio.mp3');

TxtWriter=dspdemo.TextFileWriter('Filename',

 'audio.txt');

TxtReader=dspdemo.TextFileReader('Filename',

 'audio.txt');

TimeScope=dsp.TimeScope('YLimits',[-1,1],

 'TimeSpan',4,'SampleRate',AudioReader.SampleRate);

TimeScope.BufferLength=2*TimeScope.SampleRate*...

 TimeScope.TimeSpan;

AudioWriter=dsp.AudioFileWriter('Filename',

 'audio.wav');

% Importing of 'audio.mp3', generation of

 'audio.txt' and TimeScope visualization

while (~isDone(AudioReader))

 data=step(AudioReader);

 step(TxtWriter,data);

 step(TimeScope,data);

end

release(TxtWriter); release(TimeScope); release(AudioReader);

% Reading of 'audio.txt' and storage of

 'audio.wav'

while (~isDone(TxtReader))

 data=step(TxtReader);

 step(AudioWriter,data);

end

release(TxtReader); release(AudioWriter);

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 5

September – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 270

Fig. 3. Real-time plot on virtual oscilloscope

2) Example n. 2

In this example, 2 sinusoids (having frequencies respectively of 50Hz e 60Hz) are generated using the dsp.

Sine Wave [23] System Object™, the samples are stored into a sin.txt file; then, the file sin.txt is read and

the acquired data is shown on a virtual oscilloscope (Fig. 4) [24].

% TxtWriter

TxtWt=dspdemo.TextFileWriter('Filename','sin.txt');

% Sinusoid with dsp.SineWave S.O.

fs=8000; f=[50,60]; frameLength=32;

SinWv=dsp.SineWave('Frequency',f,'SampleRate',fs,

 'SamplesPerFrame',frameLength);

% Run a number of iterations to create .txt file

tmax=10; t=(0:1/fs:tmax-1/fs)'; N=length(t);

numCycles=N/frameLength;

for k=1:numCycles

 dataFrame=step(SinWv);

 step(TxtWt,dataFrame);

end

% Release

release(TxtWriter); release(SineWave);

% TxtReader and TimeScope

TxtRd=dspdemo.TextFileReader('Filename','sin.txt',

 'SamplesPerFrame',frameLength);

TimeScope=dsp.TimeScope('YLimits',[-1,1],...

 'TimeSpan',0.05,'SampleRate',fs, ...

 'ShowGrid',true);

% Read from .txt and visualize TimeScope

while (~isDone(TxtRd))

 dataFrame=step(TxtRd);

 step(TimeScope,dataFrame);

end

release(TimeScope); release(TxtRd);

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 5

September – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 271

Fig. 4. Real-time plot of the generated sinusoids

IV. GUI DESIGN WITH MATLAB GUIDE™

In many applications, it may be required to build a Graphical User Interface (GUI) with GUIDE™

MATLAB tool, to make the product easily accessible to the final user [25].

A. GUIDE™ Overview

The first step is to open GUIDE™ typing guide on the MATLAB Command Window. Now we have to

choose among various templates, as fig. 5 shows:

Fig. 5. GUI templates

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 5

September – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 272

For example, if we choose a Blank template, we will get the situation in Fig. 6:

Fig. 6. Blank GUI

In Fig. 6, we can see on the left all the items that can be used to build a GUI. In this section, we will

describe some general features of a GUI and its items.

B. Main features

Each item included in GUIDE™ has a list of properties, accessible by a double-click on it, as fig. 7 shows.

We can notice:

Fig. 7. Main properties of a pushbutton

- String, the text written into/next to the selected item;

- Style, the type (pushbutton, checkbox, editable text box, etc);

- Tag, a name by which MATLAB™ finds the item into the source code.

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 5

September – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 273

Clicking on the Save button, the source code is automatically generated. This code is divided into many

functions:

- a GUI automatically generated function; do not edit:

function varargout = Example_GUI(varargin)

% Begin initialization code - DO NOT EDIT

- opening function, usually where variables and System Objects™ are defined:

% Executes just before Example_GUI is made visible.

function Example_GUI_OpeningFcn(hObject,

 eventdata, handles, varargin)

handles.output = hObject;

% handles update

guidata(hObject, handles);

- output function:

% Outputs

function varargout=Example_GUI_OutputFcn(hObject,

 eventdata, handles)

varargout{1} = handles.output;

- functions associated to the GUI items (here we can see a pushbutton function):

% --- Executes on button press in pushbutton1.

function pushbutton1_Callback(hObject, eventdata, handles)

1) Focus: hObject and handles

Each function has some input variables: hObject, handles, eventdata. However, we will focus on hObject

and handles, because eventdata has not been implemented until the R2016b release of MATLAB®.

a) hObject

Every GUI item has an associated function in the source code; we will use the hObject syntax to refer to the

selected object into its own function.

We need 2 commands to achieve a bi-directional interaction with an object: get and set. For example, let’s

consider the syntax to get or set the content of an editable text box:

get, acquires the object’s state

get(hObject,’String’)

ans =

 Duration

set, defines a custom state for the object

set(hObject,’String’,’Ciao’)

b) handles

With the handles structure it is possible to share data among callbacks.

Let’s suppose to be into a pushbutton function; we may want to get or set the state of an editable text box

(tag edit1) [26]:

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 5

September – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 274

get, acquires the object’s state

get(handles.edit1,

 ’String’)

ans =

 Duration

set, defines a custom state for the object

set(handles.edit1,’String’,

 ’Ciao’)

The handles structure has another important application. In fact, when we define a new variable into a

function, we cannot use it in other callbacks. In order to share variables (or even System Objects™ and

sessions) among callbacks it is necessary to store them into the handles structure:

handles.a=5

handles.s=daq.createSession(‘ni’)

handles.TimeScope=dsp.TimeScope

Storage of a variable, an acquisition session or a

System Object™ into the handles structure.

guidata(hObject,handles)

Update of the handles structure, in order to use the

stored data into other callbacks.

Let’s consider the following simple example. Button 1 generates a random number between 0 and 10, it

stores it into the rand1 cell of the handles structure, Button 2 doubles it:

function pushbutton1_Callback(hObject, eventdata,handles)

handles.rand1=10*rand;

a = handles.rand1

guidata(hObject,handles);

function pushbutton2_Callback(hObject, eventdata,handles)

b = (handles.rand1)*2

a = 9.0579

b = 18.1158

2) Pop-up Menu

A Pop-up Menu is used when the user should choose something among various options. The

automatically generated code consists into 2 functions:

a) popupmenu1_CreateFcn: list initialization;

we can define the various choices typing a set command; this example shows how to generate a list with 2

options, Choice1 and Choice2:

function popupmenu1_CreateFcn(hObject, eventdata,

 handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

 get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

% List generation

set(hObject,'String',{'Choice1','Choice2'});

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 5

September – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 275

 b) popupmenu1_Callback: operations done after a choice has been made; cellstr and contents commands

together allow to get the choice made by the user and store it into the variable choice; the following if

defines a specific function associated to each choice:

function popupmenu1_Callback(hObject, eventdata, handles)

% Get the choice made and store into 'choice'

contents = cellstr(get(hObject,'String'));

choice=contents{get(hObject,'Value')};

if (strcmp(choice,'Choice1'))

 % Operations for Choice1

elseif (strcmp(choice,'Choice2'))

 % Operations for Choice2

end

3) Editable Text Box

It is used to allow the user to manually set some parameters:

- if we are into the edit1 associated function;

get, acquires the object’s state

get(hObject,’String’)

ans = Duration

set, defines a custom state for the object

set(hObject,’String’,’Ciao’)

- if we are into another callback;

get, acquires the object’s state

get(handles.edit1,

’String’)

ans = Duration

set, defines a custom state for the object

set(handles.edit1,’String’,

’Ciao’)

4) Static Text

This text box cannot be modified by the user on the GUI. Its state can only be defined into the .m source

Matlab code:

get, acquires the object’s state

get(handles.txt1,

’String’)

ans = Static Text Example

set, defines a custom state for the object

set(handles.txt1,’String’,

’Ciao’)

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 5

September – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 276

5) Axes

It simply reserves a GUI section for a plot visualization, as fig. 8 shows:

Fig. 8. GUI Axes

6) Checkbox

Using checkboxes we can do different operations depending on which they are selected or not. A checkbox

(box1) has 2 properties, Value and String:

get → Value,acquires the logic state of the object (selected or not)

get(handles.box1,’Value’)

ans = 0

(not selected)

 ans = 1 (selected)

get → String, acquires the text shown next to the checkbox

get(handles.box1,’String’)

ans =

Check Box

set → Value, defines a custom logic state for the object (selected or not)

set(handles.box1,’Value’,0)
set(handles.box1,’Value’,1)
set → String, defines a custom text to be shown next to the checkbox

set(handles.box1,’String’,’Ciao’)

7) Pushbutton

The callback of a pushbutton is executed when the user clicks on it. In this example code, Button 1

generates a random number between 0 and 10:

function pushbutton1_Callback(hObject, eventdata, handles)

n=10*rand;

C. Example code to design a GUI

This example includes all the items analysed in this section. Fig. 9 shows the designed GUI.

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 5

September – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 277

Fig. 9. Example GUI

1) GUI specifications

This interface gives the chance to plot various signals. In particular the user has to:

a) choose which type of signal he wants to plot, between:

- trigonometric (sinusoid, cosinusoid or both);

- other signals (sawtooth wave, square wave or both);

b) set the desired duration and frequency for the signals.

The GUI opening function defines Trigonometric as the default signal type, using an auxiliary variable

handles.type:

function Example_GUI_OpeningFcn(hObject, eventdata,

 handles,varargin)

% Default settings

handles.type='Trig';

handles.output = hObject;

% handles update

guidata(hObject, handles);

2) Pop-Up Menu, Checkbox, Editable Text Box

On the list there are 2 options, Trigonometric and Other:

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 5

September – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 278

function popupmenu1_CreateFcn(hObject, eventdata,

 handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

 get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

% List generation

set(hObject,'String',{'Trigonometric','Other'});

Now we have to setup the GUI according to the choice made. In case of Trigonometric, we will initialize 2

checkboxes Sinusoid e Cosinusoid; choosing Other, we will define 2 checkboxes Sawtooth and Square

(square wave).

function popupmenu1_Callback(hObject, eventdata,

 handles)

% Get the choice made and store into 'choice'

contents = cellstr(get(hObject,'String'));

choice=contents{get(hObject,'Value')};

% Set the checkboxes according to the choice made

if (strcmp(choice,'Trigonometric'))

 % In case of ‘Trigonometric’

 handles.type='Trig';

 set(handles.box1,'String','Sinusoid');

 set(handles.box1,'Value',0);

 set(handles.box2,'String','Cosinusoid');

 set(handles.box2,'Value',0);

elseif (strcmp(choice,'Other'))

 % In case of ‘Other’

 handles.type='Oth';

 set(handles.box1,'String','Sawtooth');

 set(handles.box1,'Value',0);

 set(handles.box2,'String','Square');

 set(handles.box2,'Value',0);

end

% Update the handles structure

guidata(hObject,handles);

According to the choice made, the checkboxes are:

Trigonometric

Other

The editable text boxes allow the user to set the desired duration and frequency of the signals:

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 5

September – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 279

3) Pushbutton

The plot of the chosen signals appears when we click on the pushbutton Plot.

a) Preliminary phase

Firstly, we should acquire the duration (tmax) and the frequency (f) of the signal specified by the user into

the editable text boxes; then, we will setup an array with all the sampling instants (every 0.01 seconds from

0 to tmax):

% Get duration and frequency

tmax=str2double(get(handles.edit1,'String'));

f=str2double(get(handles.edit2,'String'));

t=(0:0.01:tmax); % Array with sampling instants

b) Acquisition of the choice made and generation of the signals

If the choice is Trigonometric we need to generate a sinusoid and a cosinusoid; if the choice is Other we

should generate a sawtooth wave and a square wave, according to the following code:

% In case of Trigonometric

if (strcmp(handles.type,'Trig'))

 % Generation of a sinusoid and of a cosinusoid

 a=sin(2*pi*f*t); b=cos(2*pi*f*t);

elseif (strcmp(handles.type,'Oth')) % Other

 % Generation of sawtooth wave and of a square wave

 a=sawtooth(2*pi*f*t); b=square(2*pi*f*t);

c) Checkboxes state acquisition and plot generation

% Checkboxes state

c1=get(handles.box1, 'Value');

c2=get(handles.box2, 'Value');

if (c1==1 & c2==1)%Both

 subplot(2,1,1);

 plot(t,a);

 ylabel('Sinusoid');

 subplot(2,1,2);

 plot(t,b);

 ylabel('Cosinusoid');

elseif (c1==1 & c2==0)

 % Sinusoid

 subplot(1,1,1);

 plot(t,a);

 ylabel('Sinusoid');

elseif (c1==0 & c2==1)

 % Cosinusoid

 subplot(1,1,1);

 plot(t,b);

 ylabel('Cosinusoid');

end

% Checkboxes state

c1=get(handles.box1, 'Value');

c2=get(handles.box2, 'Value');

if (c1==1 & c2==1)%Both

 subplot(2,1,1);

 plot(t,a);

 ylabel('Sawtooth');

 subplot(2,1,2);

 plot(t,b);

 ylabel('Square Wave');

elseif (c1==1 & c2==0)

 % Sawtooth

 subplot(1,1,1);

 plot(t,a);

 ylabel('Sawtooth');

elseif (c1==0 & c2==1)

 % Square Wave

 subplot(1,1,1);

 plot(t,b);

 ylabel('Square Wave');

end

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 5

September – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 280

Thus, the whole function executed clicking on Plot is:

function pushbutton1_Callback(hObject, eventdata,

 handles)

% Get the parameters from the text boxes

tmax=str2double(get(handles.edit1,'String'));

f=str2double(get(handles.edit2,'String'));

t=(0:0.01:tmax);

if (strcmp(handles.type,'Trig'))

 % Sinusoid and cosinusoid

 a=sin(2*pi*f*t); b=cos(2*pi*f*t);

 c1=get(handles.box1,'Value');

 c2=get(handles.box2,'Value');

 if (c1==1 & c2==1) % Both signals

 subplot(2,1,1);

 plot(t,a); ylabel('Sinusoid');

 subplot(2,1,2);

 plot(t,b); ylabel('Cosinusoid');

 elseif (c1==1 & c2==0) % Sinusoid

 subplot(1,1,1);

 plot(t,a); ylabel('Sinusoid');

 elseif (c1==0 & c2==1) % Cosinusoid

 subplot(1,1,1);

 plot(t,b); ylabel('Cosinusoid');

 end

elseif (strcmp(handles.type,'Oth'))

 % Sawtooth and Square wave

 a=sawtooth(2*pi*f*t); b=square(2*pi*f*t);

 c1=get(handles.box1,'Value');

 c2=get(handles.box2,'Value');

 if (c1==1 & c2==1) % Both signals

 subplot(2,1,1);

 plot(t,a); ylabel('Sawtooth');

 subplot(2,1,2);

 plot(t,b); ylabel('Square Wave');

 elseif (c1==1 & c2==0) % Sawtooth

 subplot(1,1,1);

 plot(t,a); ylabel('Sawtooth');

 elseif (c1==0 & c2==1) % Square Wave

 subplot(1,1,1);

 plot(t,b); ylabel('Square Wave');

 end

end

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 5

September – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 281

4) Screenshots (Duration 1s, Frequency 5Hz)

The resulting plots are shown in the following figures where the correspondence between the selected

options and the plotted signals appears.

Trigonometric signals

a. Sinusoid:

Fig. 10. Plot of a sinusoid signal from the designed GUI

b. Cosine:

Fig. 11. Plot of a cosine signal form the designed GUI

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 5

September – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 282

c. Both trigonometric signals:

Fig. 12. Plot of both of them sinusoid and cosine signals, from the GUI

Other signals

a. Sawtooth wave:

Fig. 13. Plot of the sawtooth wave form the GUI

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 5

September – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 283

b. Square wave:

Fig. 14. Plot of the square wave form the GUI

c. Both:

Fig. 15. Plot of both of them square wave and sawtooth signals form the GUI

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 5

September – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 284

V. CONCLUSIONS

In this tutorial paper have been described the main tools of MATLAB to design a GUI to perform data

acquisition and processing. The focus is on the MATLAB GUIDE plug-in, DSP toolbox and Data

acquisition toolbox. The design of a GUI is very useful to develop information systems for many consumer

application and for research purposes [27].

Conflict of interest: The authors declare that they have no conflict of interest

Ethical statement: The authors declare that they have followed ethical responsibilities

REFERENCES

[1] Available at: https://www.mathworks.com/products/daq.html

[2] Available at: https://it.mathworks.com/help/daq/ref/daq.getdevices.html

[3] Available at: https://it.mathworks.com/help/daq/ref/daq.createsession.html

[4] Available at: https://it.mathworks.com/help/daq/ref/addanaloginputchannel.html

[5] Available at: https://it.mathworks.com/help/daq/ref/addaudioinputchannel.html

[6] Available at: https://it.mathworks.com/help/daq/ref/startforeground.html#bt960af-2

[7] Available at: https://it.mathworks.com/help/daq/ref/startbackground.html#bt9z7gd-3

[8] Available at: https://it.mathworks.com/help/daq/ref/dataavailable.html

[9] Available at: https://it.mathworks.com/help/daq/ref/iscontinuous.html

[10] Available at: https://it.mathworks.com/help/daq/ref/addanalogoutputchannel.html

[11] Available at: http://it.mathworks.com/help/daq/ref/addaudiooutputchannel.html

[12] Available at: https://it.mathworks.com/help/daq/ref/queueoutputdata.html

[13] Available at: https://it.mathworks.com/help/daq/ref/startforeground.html#bt960af-3

[14] Available at: https://it.mathworks.com/help/daq/ref/startbackground.html#bt9z7gd-4

[15] Available at: https://it.mathworks.com/help/daq/examples/acquire-continuous-and-background-data-using-ni-

devices.html

[16] Available at: https://it.mathworks.com/products/dsp-system.html

[17] Available at: https://it.mathworks.com/discovery/stream-processing.html

[18] Available at: https://it.mathworks.com/help/dsp/gs/what-are-system-

objects.html?searchHighlight=system%20objects

[19] Available at: https://it.mathworks.com/help/dsp/gs/system-objects-methods.html

[20] Available at: https://it.mathworks.com/help/dsp/ref/dsp.audiofilereader-class.html

[21] Available at: https://it.mathworks.com/help/dsp/ref/dsp.audiofilewriter-class.html

[22] Available at: https://it.mathworks.com/help/dsp/ref/dsp.timescope-class.html#zmw57dd0e292591

[23] Available at: https://it.mathworks.com/help/dsp/ref/dsp.sinewave-class.html

[24] Available at: https://it.mathworks.com/help/dsp/examples/creating-new-kinds-of-system-objects-for-file-

input-and-output.html#zmw57dd0e386

[25] Available at: https://it.mathworks.com/discovery/matlab-gui.html

[26] Available at: https://it.mathworks.com/videos/handles-and-other-inputs-to-guide-callbacks-97328.html

[27] A. Giorgio, “Design of an FPGA-based Embedded System for a reliable loading of multichannel data in the

on-chip memory for DSP purposes”, Int. Journal of Advanced Eng. Research and App. (IJA-ERA), ISSN:

2454-2377, vol. 3, no. 5, pp. 232-251, September 2017

http://www.ijaera.org/
https://www.mathworks.com/products/daq.html
https://it.mathworks.com/help/daq/ref/daq.getdevices.html
https://it.mathworks.com/help/daq/ref/daq.createsession.html
https://it.mathworks.com/help/daq/ref/addanaloginputchannel.html
https://it.mathworks.com/help/daq/ref/addaudioinputchannel.html
https://it.mathworks.com/help/daq/ref/startforeground.html#bt960af-2
https://it.mathworks.com/help/daq/ref/startbackground.html#bt9z7gd-3
https://it.mathworks.com/help/daq/ref/dataavailable.html
https://it.mathworks.com/help/daq/ref/iscontinuous.html
https://it.mathworks.com/help/daq/ref/addanalogoutputchannel.html
http://it.mathworks.com/help/daq/ref/addaudiooutputchannel.html
https://it.mathworks.com/help/daq/ref/queueoutputdata.html
https://it.mathworks.com/help/daq/ref/startforeground.html#bt960af-3
https://it.mathworks.com/help/daq/ref/startbackground.html#bt9z7gd-4
https://it.mathworks.com/help/daq/examples/acquire-continuous-and-background-data-using-ni-devices.html
https://it.mathworks.com/help/daq/examples/acquire-continuous-and-background-data-using-ni-devices.html
https://it.mathworks.com/products/dsp-system.html
https://it.mathworks.com/discovery/stream-processing.html
https://it.mathworks.com/help/dsp/gs/what-are-system-objects.html?searchHighlight=system%20objects
https://it.mathworks.com/help/dsp/gs/what-are-system-objects.html?searchHighlight=system%20objects
https://it.mathworks.com/help/dsp/gs/system-objects-methods.html
https://it.mathworks.com/help/dsp/ref/dsp.audiofilereader-class.html
https://it.mathworks.com/help/dsp/ref/dsp.audiofilewriter-class.html
https://it.mathworks.com/help/dsp/ref/dsp.timescope-class.html#zmw57dd0e292591
https://it.mathworks.com/help/dsp/ref/dsp.sinewave-class.html
https://it.mathworks.com/help/dsp/examples/creating-new-kinds-of-system-objects-for-file-input-and-output.html#zmw57dd0e386
https://it.mathworks.com/help/dsp/examples/creating-new-kinds-of-system-objects-for-file-input-and-output.html#zmw57dd0e386
https://it.mathworks.com/discovery/matlab-gui.html
https://it.mathworks.com/videos/handles-and-other-inputs-to-guide-callbacks-97328.html

