
International Journal of Advanced Engineering Research and Applications (IJA-ERA) ISSN: 2454-2377

Volume – 3, Issue – 6, October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 320

Design of a Graphical User Interface for Audio

Data Acquisition and Stream Processing using

Matlab System Objects
Agostino Giorgio* & Alessio Melibeo

Department of Electrical and Information Engineering - Polytechnic of Bari - Via E. Orabona

4 - 70125 Bari (BA) ITALY

*Corresponding Author E: agostino.giorgio@poliba.it

Abstract: In this paper we will describe how to build a MATLAB Graphical User Interface (GUI)

for audio Data Acquisition and Stream Processing. The GUI allows data acquisition from audio

devices connected to the PC sound card, stream processing (live visualization on virtual oscilloscope

and storage into a text file), and playback over audio devices. The data exchange with audio devices

was achieved using the Data Acquisition Toolbox™, the stream processing with the DSP System

Toolbox™, and the creation of the Graphical User Interface with GUIDE™ toolbox.

Keywords: Audio, Data Acquisition, DSP System Toolbox, Graphical User Interface, GUI,

MATLAB

I. INTRODUCTION

This Paper aims at describing a project developed using MATLAB® from The Mathworks, Inc, a

software development environment used in many electronic fields (e.g. safety systems, motor

vehicles, interplanetary spacecrafts, medical devices, robot control, data acquisition and processing).

The project consists in the creation of a GUI (Graphical User Interface) for:

a. data acquisition from audio devices;

b. data stream processing, especially:

- real-time plot visualization of the acquired data;

- storage of the acquired samples into a text file;

c. post-processing operations, such as:

- data transmission over audio devices;

- storage of the acquired data into an audio file.

There are three main toolboxes involved into the project:

a. Data Acquisition Toolbox™, for data exchange with external hardware;

b. DSP System Toolbox™, for stream processing;

c. GUIDE™, for the building of a Graphical User Interface (GUI).

Therefore, section II provides an overview about the above-mentioned toolboxes; section III deals

with the description of the designed GUI; conclusions and final remarks are in section IV.

http://www.ijaera.org/
mailto:agostino.giorgio@poliba.it

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 321

II. MATLAB TOOLBOXES USED IN THIS PROJECT

A. Data Acquisition ToolboxTM

Data Acquisition Toolbox™ [1] allows a bi-directional data exchange between MATLAB® and

many Input/Output devices, such as USB, PCI, PXI devices from National Instruments, Digilent,

DirectSound, and Analog Devices.

The toolbox allows:

- data acquisition from Input devices;

- data transmission over Output devices.

To this aim, many steps are required, as summarized in the following.

1) Building of a session

The first step is to get a list of the acquisition hardware connected to the PC typing a daq.getDevices

command [2]. The command returns a list of acquisition devices available on the PC and their

parameters:

- index, the position occupied by the device into d;

- Vendor, the manufacturing company;

- Device ID, the name by which MATLAB® recognizes the device;

- Description, a short overview on the device.

The second step is to create a session linked to a specific Vendor [3]. For example, we may want to

exchange data with DirectSound devices (the audio devices connected to the PC sound card1):

s=daq.createSession(‘directsound’)

Every property of a session has a default value, which can be shown by a get command that returns a

list of parameters as follows:

UseStandardSampleRates: true

BitsPerSample: 24

StandardSampleRates: [1x15 double]

NumberOf Scans: 44100

DurationInSeconds: 1

Rate: 44100

IsContinuous: false

NotifyWhenDataAvailableExceeds: 44100

IsNotifyWhenDataAvailableExceedsAuto: true

The programmer can modify some of the previous parameters; for example, this is the syntax to

manually set the duration and the sampling rate of the acquisition:

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 322

s.DurationInSeconds=5;

s.Rate=48000;

2) Add input channels for data acquisition

The first step to acquire data is to add input channels linked to the desired device. It is necessary to

specify the device ID, the channel ID and the measurement type:

- to acquire analog data [4], it is necessary to specify the measurement type, choosing among

’Voltage’, ’IEPE’, ’Current’, ’RTD’, ’Bridge’, ’Thermocouple’, ’Accelerometer’, ’Microphone’:

addAnalogInputChannel(s,devID,chID,measureType)

- to acquire audio data [5]:

 addAudioInputChannel(s,deviceID,channelID)

Consider the following examples:

addAnalogInputChannel(s,’cDAQ1Mod3’,1,’Current’);

addAudioInputChannel(s,’Audio1’,1:2);

- in the first case we can acquire current data from the National Instruments device NI 9234,

using channel 1;

- in the other case we can acquire audio data from the DirectSound device Microfono (Realtek

High Definition Audio) through channels 1 and 2.

3) Performing acquisition

After adding channels, we can really start the acquisition. We have 2 options:

- Foreground acquisition [6];

- Background acquisition [7].

a) Foreground acquisition

This is an exclusive priority task, which means that no other code line can be read in the meanwhile.

Consider the following example:

% Session setup

s=daq.createSession('directsound');

addAudioInputChannel(s,'Audio1',1:2);

s.DurationInSeconds=5;

% Warn the user about the start

disp('Starting');

% Acquisition starts

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 323

audio=startForeground(s);

% Warn the user about the end

disp('Done');

In the previous example we acquired audio data for 5 seconds from a Microphone connected to the

PC. The acquired data is stored into a matrix called ‘audio’. It is important to notice how the

startForeground command deny the reading of the following code lines.

b) Background acquisition

However, the Foreground acquisition obviously doesn’t allow a real-time control. For example, it is

not possible to show a live plot of the acquired data. Moreover, it exclusively occupies MATLAB®,

which is a problem in case of a great amount of data.

So, we need to define a listener, which is a function that works in Background, while other

operations can be done.

The syntax to define a listener is:

l=addlistener(sess_name,event_name,@funct_name)

We need to add a listener to the session (sess_name) which executes a function (funct_name) when

an event occurs (event_name).

In case of acquisition, the event is called DataAvailable, which means that there actually is some

incoming data [8]:

l=addlistener(session,’DataAvailable’,@f_name)

The function f_name must have 2 input variables:

a. src, the session which the listener is linked to;

b. event, a structure made by 3 fields:

- Data, MxN matrix (M number of samples, N number of channels) with the incoming data;

- TimeStamps, Mx1 array (M num. of samp.) with sampling instants;

- TriggerTime, the absolute trigger time of the acquisition.

We can define the previous function in 2 ways:

- anonymous function:

lis=addlistener(s,’DataAvailable’,...

 @(src,event) % Operations)

- calling an existent function:

l=addlistener(s,’DataAvailable’,@function_name);

function function_name(src,event)

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 324

 % Background Operations

end

For example, we can define an anonymous function for a real-time plot visualization as follows:

lis=addlistener(s,'DataAvailable',...

@(src,event) plot(event.TimeStamps,event.Data));

After adding a listener, the acquisition can start in 2 ways:

- limited acquisition;

- continuous acquisition.

(1) Limited acquisition

We need to specify the acquisition duration; if we don’t, the session will run for the default duration

(Fig. 2):

s.DurationInSeconds = 5

The following example code acquires data for 5 seconds from the Microphone and shows a real-time

plot of the acquired data:

% Session setup

s=daq.createSession('directsound');

addAudioInputChannel(s,'Audio1',1:2);

s.DurationInSeconds=5;

% Listener setup

l=addlistener(s,'DataAvailable',...

 @(src,event) plot(event.TimeStamps,event.Data));

% Warn the user about the start of the

 acquisition

disp('Starting');

% Acquisition start

startBackground(s);

(2) Continuous acquisition

In real cases it is necessary to acquire and process data for a long (or even unknown) time and not

just for a few seconds. Therefore, we need to run a continuous acquisition [9] setting the

corresponding variable as true:

s.IsContinuous = true

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 325

The acquisition will run until a stop command is given:

stop(s)

The following example code, performs a continuous acquisition from the Microphone and a real-time

plot visualization; now the user has to manually stop the acquisition typing 0:

% Session setup

s=daq.createSession('directsound');

addAudioInputChannel(s,'Audio1',1:2);

s.IsContinuous=true; % Continuous

% Listener definition

l=addlistener(s,'DataAvailable',...

 @(src,event) plot(event.TimeStamps,event.Data));

disp('Starting');

% Acquisition starts

startBackground(s);

% ‘0’ stops the acquisition

i=input('Press 0 to stop\n');

if i==0

 stop(s);

end

Having examined the steps necessary in order to perform data acquisition, they follow the steps in

order to perform Data Transmission:

4) Add output channels for Data transmission

The first step is again to add channels over which we want to send data:

- for an analog data transmission [10] the command is:

addAnalogOutputChannel(s,devID,chID,measureType)

- for an audio data transmission [11] the command is:

addAudioOutputChannel(s,deviceID,channelID)

Consider the following examples:

addAnalogOutputChannel(s,'cDAQ1Mod2','a0','Voltage')

addAudioOutputChannel(s,'Audio4',1:2)

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 326

- in the first case we can send voltage data to the device NI 9263 through the channel named

a0;

- in the other case we can send audio data over the DirectSound device Altoparlanti (Realtek

High Definition Audio) through channels 1 and 2.

5) Performing Transmission

In order to start a transmission, we have to queue data (stored into a matrix) [12]. We need to use the

following command:

s.queueOutputData(data);

We queued a matrix/array called data; it is important that the number of columns equals the number

of channels.

We have 2 transmission ways:

- Foreground transmission [13];

- Background transmission [14].

a) Foreground Transmission

During a Foreground data transmission no other operation can be done.

In the following example, we queue a matrix called audio containing data, and we start a Foreground

transmission over the PC Speakers:

% Session setup

s=daq.createSession('directsound');

addAudioOutputChannel(s,'Audio4',1:2);

disp('Starting');

s.queueOutputData(audio); % Queue data

startForeground(s);

disp('Done');

b) Background Transmission

If we should perform other operations in the meanwhile (e.g. stop the transmission) we need a

Background transmission.

So, we should define a listener which queues data:

l=addlistener(sess_name,event_name,@funct_name)

In this case, the event_name is DataRequired, which means that there is data to send:

l=addlistener(s,'DataRequired',...

 @(src,event) src.queueOutputData(audio));

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 327

In the following example code, a matrix called audio is queued and sent in Background over the PC

Speakers; we can stop the transmission typing 0:

% Session setup

s=daq.createSession('directsound');

addAudioOutputChannel(s,'Audio4',1:2);

l=addlistener(s,'DataRequired',...

 @(src,event) src.queueOutputData(audio));

disp('Starting');

s.queueOutputData(audio); % Queue data

startBackground(s);

i=input('Press 0 to stop\n'); % Type ‘0’ to stop

if i==0

 stop(s);

end

B. DSP System ToolboxTM

The DSP System Toolbox™ [16] is specialized in data Stream Processing [17].

In many applications, it is required a live monitoring of data, so we need the Stream Processing

procedure, which means to:

- divide the incoming data into frames;

- acquire and store only a single frame at a time;

- process the acquired frame before the next one arrives.

Fig. 1 shows the main scheme of the Stream Processing.

The Stream Processing procedure allows a real-time control over the data, for example, we may want

a real-time plot visualization of the ECG of a patient. We can do it by dividing the signal into packets

and visualizing onto the screen one packet at a time.

In addition, there’s an advantage in the memory usage: in fact only a single frame is acquired and it

is fully processed before the next one arrives. In this way, only a small amount of data has to be

handled at a time.

Stream Processing is made possible by using System Objects™ [18], specialized functions included

in the DSP System Toolbox™ which allow many frame-by-frame operations, such as storage/reading

Fig. 1. Stream-processing main scheme

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 328

of samples into/from a text/audio file, or turning MATLAB® into a virtual oscilloscope for a real-

time plot or a spectrum visualization.

1) Overview about System Objects

The following syntax allows the creation of a System Object™ (H) which executes a special DSP

System Toolbox function (FunctionName):

H = dsp.FunctionName(function_properties);

Every System Object™ has some methods [19]:

step

Syntax 2
step(H,data);

data=step(H);

Description

It executes the function:

Executes H with data as Input;

Executes H with data as Output.

release

Syntax release(H)

Description

It releases all the variables, files, etc. used

by H in order to allow the usage in other

operations.

isDone

Syntax isDone(H)

Description

It is a propositional parameter:

- true means that step is finished;

- false means that step is still

running.

Default

Value

false

2) Focus on the most significant System Objects™

a) dspdemo.TextFileWriter

TxtWrt=dspdemo.TextFileWriter(‘Property’,Value)

It allows the storage of the acquired samples into a text file. It has the following properties:

Filename

Description Name of the generated file (here file.txt).

Syntax ‘Filename’,’file.txt’

Default

value

‘tempfile.txt’

Header

Description
It is a custom description written on the top of the text file,

before the samples can be stored.

2 Since R2016b MATLAB® we can call the step method in other ways:

a) H(data)

b) data=H()

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 329

Syntax ‘Header’,header

Default

value

‘\n\n\n\n’ (4 blank lines)

Example code

Storage of sinusoid samples into a text file:

% Sampling rate

fs=1000;

% Array Nx1 with the sampling instants

t=(0:(1/fs):(0.1-1/fs))';

N=length(t);

% 50Hz sinusoid

sinwave=sin(2*pi*50*t);

% Header

head='Sinusoide di 50Hz e durata 0.1 secondi.\n\n';

% Creation of the System Object

TxtWrt=dspdemo.TextFileWriter('Filename','file.txt',

 'Header',head);

% Storage into a file.txt

for k=1:N

 % Executes the S.O. with ‘sinwave’ as Input

 step(TxtWrt,sinwave);

end

b) dspdemo.TextFileReader

TxtRd=dspdemo.TextFileReader(‘Property’,Value)

It allows the reading of the samples stored into a text file.

Its properties are:

Filename

Description Name of the file we want to read (here file.txt).

Syntax ‘Filename’,’file.txt’

Default

value

‘tempfile.txt’

HeaderLines

Description
Number of header lines. The reading starts from the following

line.

Syntax ‘HeaderLines’,n

Default 4

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 330

value

SamplesPerFrame

Description Number of samples stored into a single frame.

Syntax ‘SamplesPerFrame’,frameLength

Default

value

1024

Example code

Reading samples from file.txt and storage into a matrix called temp:

% S.O. creation

TxtRd=dspdemo.TextFileReader('Filename','file.txt',

 'HeaderLines',2,...

 'SamplesPerFrame',20);

% Matrix initialization

temp=[];

% Reading of the file frame-by-frame

while (~isDone(TxtRd))

 % Reading and storage into ‘data’

 data=step(Txtd);

 % Update the final matrix

 temp=[temp;data];

end

c) dsp.AudioFileReader

AudioReader=dsp.AudioFileReader(‘Property’,Value)

It allows the importing of an audio file into a matrix in the workspace [20]. Its main properties are:

Filename

Description Name of the audio file to be imported (here audio.mp3).

Syntax ‘Filename’,’audio.mp3’

Default

value

‘speech_dft.mp3’

SamplesPerFrame

Description Number of samples stored into a single frame.

Syntax ‘SamplesPerFrame’,frameLength

Default

value

1024

Example code

Importing of an audio.mp3 file and storage into a matrix:

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 331

% Creation of the S.O.

AudioRd=dsp.AudioFileReader('Filename','audio.mp3');

% Matrix initialization

temp=[];

% Frame-by-frame reading

while (~isDone(AudioRd))

 % Reading and storage into ‘data’

 data=step(AudioRd);

 % Update the final matrix

 temp=[temp;data];

end

d) dsp.AudioFileWriter

AudioWriter=dsp.AudioFileWriter(‘Property’,Value)

It allows the data storage into an audio file [21].

Its main properties are:

Filename

Description Name of the generated file (here audio.wav).

Syntax ‘Filename’,’audio.wav’

Default

value

‘output.wav’

FileFormat

Description Codec, choosing among AVI, WMA, WAV, OGG, MPEG-4, FLAC.

Syntax ‘FileFormat’,Format

Default

value

‘WAV’

SampleRate

Description Writing sampling rate.

Syntax ‘SampleRate’,sRate

Default

value

44100

Example code

Conversion from matrix to audio file:

% S.O. creation

AudioWt=dsp.AudioFileWriter('Filename','audio.wav',

 'FileFormat','WAV','SampleRate',44100);

% Generation of the file

step(AudioWriter,temp);

% S.O. releasing

release(AudioWriter);

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 332

e) dsp.TimeScope

TimeScope = dsp.TimeScope(‘Property’,Value)

It turns MATLAB® into a virtual oscilloscope for a real-time plot visualization and many

measurement types.

For the whole list of its properties check on the official website [22]; here we will describe the

most important ones:

TimeSpan

Description Dimension (in seconds) of the time-axis of the plot.

Syntax ‘TimeSpan’,t

Default

value

10 s

SampleRate

Description Sampling rate (Hz).

Syntax ‘SampleRate’,sRate

Default

value

1 Hz

BufferLength

Description
Amount of data to be cached. For a correct visualization use this buffer:

buffer = Num. of Channels * TimeSpan * SampleRate

Syntax ‘BufferLength’,buffer

Default

value

5000

NumInputPorts

Description Number of inputs to be shown.

Syntax ‘NumInputPorts’,num

Default

value

1

Ylimits

Description Data range to be shown.

Syntax ‘YLimits’,Limits

Default

value

[-10,10]

Example code

Sinusoid generation (duration 1 s, frequency 5 Hz) and real-time visualization on virtual

oscilloscope (Fig. 2):

% Sinusoid settings

fs=1000; tmax=1; t=(0:(1/fs):(tmax-1/fs))'; N=length(t);

fLength=50;

% Sinusoid creation (frequency 5Hz,duration 'tmax')

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 333

sinwave=sin(2*pi*5*t);

% Creation of the TimeScope

TimeScope=dsp.TimeScope('TimeSpan',tmax,'YLimits',

 [-1,1],'BufferLength',tmax*fs,'SampleRate',fs);

% Start visualization frame-by-frame

for k=1:(N/fLength)

 step(TimeScope,sinwave);

end

It is also possible to make some measurements, for example using manual cursors (Fig. 2):

3) Example code

The following example code contains every System Object™ discussed in this section. In particular,

it imports an audio.mp3 file into a matrix called data, it stores the acquired data into an audio.txt file

and shows a real-time plot on a virtual oscilloscope. Then, it reads the samples from the audio.txt file

and generates an audio.wav file:

% System Objects creation

AudioReader=dsp.AudioFileReader('Filename',

 'audio.mp3');

TxtWriter=dspdemo.TextFileWriter('Filename',

 'audio.txt');

TxtReader=dspdemo.TextFileReader('Filename',

 'audio.txt');

TimeScope=dsp.TimeScope('YLimits',[-1,1],

 'TimeSpan',4,'SampleRate',AudioReader.SampleRate);

TimeScope.BufferLength=2*TimeScope.SampleRate*...

 TimeScope.TimeSpan;

AudioWriter=dsp.AudioFileWriter('Filename',

 'audio.wav');

% Importing of 'audio.mp3', generation of

 'audio.txt' and TimeScope visualization

while (~isDone(AudioReader))

 data=step(AudioReader);

 step(TxtWriter,data);

Fig. 2. Real-time plot on virtual oscilloscope and measurement with cursors

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 334

 step(TimeScope,data);

end

release(TxtWriter); release(TimeScope); release(AudioReader);

% Reading of 'audio.txt' and storage of

 'audio.wav'

while (~isDone(TxtReader))

 data=step(TxtReader);

 step(AudioWriter,data);

end

release(TxtReader); release(AudioWriter);

C. GUIDE™ Toolbox Overview

In many applications, it may be required to build a Graphical User Interface (GUI). To this aim, it

is very useful the Matlab GUIDE™ toolbox, to make the product easily accessible to the final user

[25].

The first step is to open GUIDE™ typing guide on the Command Window. Now we have to

choose among various templates:

Blank GUI

GUI with Uicontrolos

GUI with Axes and Menu

Modal Question Dialog

For example if we choose a Blank template, we will get the screen in fig. 3:

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 335

In Fig. 3 we can see on the left all the items that can be used to build a GUI. In this section general

features of a GUI and its items are provided.

D. General features

Each item included in GUIDE™ has a list of properties, accessible by a double-click on it. We can

notice in particular:

- String, the text written into/next to the selected item;

- Style, the type (pushbutton, checkbox, editable text box, etc);

- Tag, a name by wich MATLAB™ finds the item into the source code.

Clicking on the Save button, the source code is automatically generated. This code is divided into

many functions:

- a GUI automatically generated function; do not edit:

function varargout = Example_GUI(varargin)

% Begin initialization code - DO NOT EDIT

- opening function, usually where variables and System Objects™ are defined:

% Executes just before Example_GUI is made visible.

function Example_GUI_OpeningFcn(hObject,

Fig. 3. Blank GUI

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 336

 eventdata, handles, varargin)

handles.output = hObject;

% handles update

guidata(hObject, handles);

- output function:

% Outputs

function varargout=Example_GUI_OutputFcn(hObject,

 eventdata, handles)

varargout{1} = handles.output;

- functions associated to the GUI items (here we can see a pushbutton function):

% --- Executes on button press in pushbutton1.

function pushbutton1_Callback(hObject, eventdata, handles)

1) Focus on hObject and handles

Each function has some input variables: hObject, handles, eventdata. However, we will focus on

hObject and handles, because eventdata has not been implemented until the R2016b version of

MATLAB®.

a) hObject

Every GUI item has an associated function in the source code; we will use the hObject syntax to

refer to the selected object into its own function.

We need 2 commands to achieve a bi-directional interaction with an object: get and set. For example

let’s consider the syntax to get or set the content of an editable text box:

get, acquires the object’s state

Duration

get(hObject,’String’)

ans =

 Duration

set, defines a custom state for the object

set(hObject,’String’,’Ciao’) Ciao

b) handles

With the handles structure it is possible to share data among callbacks.

Let’s suppose to be into a pushbutton function; we may want to get or set the state of an editable text

box (tag edit1) [26]:

get, acquires the object’s state

Duration

get(handles.edit1,

 ’String’)

ans =

 Duration

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 337

set, defines a custom state for the object

set(handles.edit1,’String’,

 ’Ciao’)
Ciao

The handles structure has another important application. In fact, when we define a new variable

into a function, we cannot use it in other callbacks. In order to share variables (or even System

Objects™ and sessions) among callbacks it is necessary to store them into the handles structure:

handles.a=5

handles.s=daq.createSession(‘ni’)

handles.TimeScope=dsp.TimeScope

Storage of a

variable, an

acquisition session

or a System

Object™ into the

handles structure.

guidata(hObject,handles)

Update of the

handles structure, in

order to use the

stored data into

other callbacks.

Let’s consider the following simple example. Button 1 generates a random number between 0 and

10, it stores it into the rand1 cell of the handles structure, Button 2 doubles it:

function

pushbutton1_Callback(hObject,

eventdata,handles)

handles.rand1=10*rand;

a = handles.rand1

guidata(hObject,handles);

function

pushbutton2_Callback(hObject,

eventdata,handles)

b = (handles.rand1)*2

a =

 9.0579

b =

 18.1158

2) Pop-up Menu

A Pop-up Menu is used when the user has to choose something among various options. The

automatically generated code consists into two functions:

a) popupmenu1_CreateFcn: list initialization;

we can define the the various choices typing a set command. The following example code shows

how to generate a list with two options, Choice1 and Choice2

function popupmenu1_CreateFcn(hObject,

eventdata,

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 338

 handles)

if ispc &&

isequal(get(hObject,'BackgroundColor'),...

 get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

% List generation

set(hObject,'String',{'Choice1','Choice2'});

 b) popupmenu1_Callback: this function addreses operations done after a choice has been made;

cellstr and contents commands together allow to get the choice made by the user and store it into a

variable choice; the following if defines a specific function associated to each choice:

function popupmenu1_Callback(hObject, eventdata, handles)

% Get the choice made and store into 'choice'

contents = cellstr(get(hObject,'String'));

choice=contents{get(hObject,'Value')};

if (strcmp(choice,'Choice1'))

 % Operations for Choice1

elseif (strcmp(choice,'Choice2'))

 % Operations for Choice2

end

3) Editable Text Box

An editable Text Box allows the user to manually set some parameters:

- if we are into the edit1 associated function;

get, acquires the object’s state

Duration

get(hObject,’String’)

ans =

 Duration

set, defines a custom state for the object

set(hObject,’String’,’Ciao’) Ciao

- if we are into another callback;

get, acquires the object’s state

Duration

get(handles.edit1,

’String’)

ans =

 Duration

set, defines a custom state for the object

set(handles.edit1,’String’, Ciao

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 339

’Ciao’)

4) Static Text

A static text box cannot be modified by the user on the GUI. Its state can only be defined into the

.m source code:

get, acquires the object’s state

Static Text

get(handles.txt1,

’String’)

ans =

 Static Text

set, defines a custom state for the object

set(handles.txt1,’String’,

’Ciao’)
Ciao

5) Axes

It simply reserves a GUI section for a plot visualization:

6) Checkbox

Checkboxes allow different operations depending on which they are selected or not. A checkbox

(box1) has two properties, Value and String:

get → Value,acquires the logic state of the object (selected or

not)

get(handles.box1,’Value’)

ans = 0

(not selected)

ans = 1

(selected)

get → String, acquires the text shown next to the checkbox

get(handles.box1,’String’)

ans =

Check Box

set → Value, defines a custom logic state for the object

(selected or not)

set(handles.box1,’Value’,0)
set(handles.box1,’Value’,1)
set → String, defines a custom text to be shown next to the

checkbox

set(handles.box1,’String’,’Ciao’)

7) Pushbutton

The callback of a pushbutton is executed when the user clicks on it. In this example, Button 1

generates a random number between 0 and 10:

function pushbutton1_Callback(hObject, eventdata, handles)

n=10*rand

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 340

Having described the main features of the Matlab toolboxes involved in the new project, in the

next section the new designed GUI is described.

III. MATLAB® GUI FOR AUDIO DATA ACQUISITION AND STREAM PROCESSING

This project deals with the creation of a GUI for:

a. Audio data acquisition from AudioInput devices;

b. Data Stream Processing, especially:

- real-time plot visualization on virtual oscilloscope;

- storage of the acquired samples into a text file;

c. Post-Processing:

- transmission of the acquired data over AudioOutput devices;

- data storage into an audio file.

A. GUI Overview

The GUI is depicted in fig. 4:

It is divided into 4 sections:

1. Acquisition SETUP, where the session’s features are initialized:

- Pop-Up Menu (automatically generated), for the selection of the desired AudioInput device;

- Checkboxes, to choose the acquisition mode between:

 continuous (runs until the user stops it);

 limited (runs for a fixed time specified by the user);

- Editable Text Box, in which the user has to specify the duration of the limited acquisition;

2. Acquisition, basically the acquisition’s control section:

- Pushbutton Start, to begin the acquisition;

- Pushbutton Stop, to stop the continuous acquisition (it is meaningless in case of a limited

acquisition);

Fig. 4. GUI for audio-data acquisition

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 341

3. Post-Processing, where the acquired data can be processed in various ways:

- Pop-Up Menu (automatically generated), for the selection of an AudioOutput device over

which we want to send the acquired data;

- Pushbutton Play, to start the transmission;

- Pushbutton Save WAV, to store the acquired data into an audio file called Audio.wav;

- Pushbutton Time Scope, to visualize a time-domain plot of the whole acquired data on a

virtual oscilloscope;

4. Pushbutton Reset, to restart the GUI in order to fix some issues (e.g. wrong device lists).

We are going to fully analyze each section, describing all the items and their associated functions.

B. Preliminary phase

1) Opening function

Here many variables (numeric, propositional, System Objects™) are defined. They will be stored

into the handles structure to be available in other callbacks:

a. positioning the GUI:

movegui(gcf,'northwest');

set(0,'units','pixel');

res=get(0,'screensize');

the movegui(gcf,’northwest’) command moves the GUI to northwest (top-left). Then, we acquire

the resolution of the monitor on which MATLAB® is running, in order to position the TimeScope

window accordingly (on some PC the TimeScope window may overlap the GUI).

The result is an array:

[1 1 resHor resVert] (e.g.[1 1 1366 768]).

b. System Objects™ creation code:

handles.TimeScope=dsp.TimeScope('YLimits',[-1,1],

'SampleRate',44100,'ShowGrid',true,...

'Position',[res(3)/2,res(4)/3,res(3)/2.5,res(4)/2]);

handles.TxtWt=dspdemo.TextFileWriter('Filename', 'camp.txt');

handles.TxtRd=dspdemo.TextFileReader('Filename', 'camp.txt','SamplesPerFrame',44100);

handles.SaveWav=dsp.AudioFileWriter('Filename', 'Audio.wav','SampleRate',44100);

- TimeScope, for a real-time plot visualization. The property Position moves the TimeScope window

according to the screen resolution (previously acquired). It is important that the property

SampleRate corresponds to the SampleRate of an audio session;

- TxtWt e TxtRd, to store (and read) samples into (from) a text file called camp.txt. To make things

work, we have to set a proper frame dimension;

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 342

- SaveWav, to store the acquired data into an audio file called Audio.wav (setting a proper

SampleRate);

c. initialization of some auxiliary variables (described later) and setting of their default values:

handles.in='Nothing';

handles.out='Nothing';

handles.venin='directsound';

handles.venout='directsound';

d. update of the handles structure:

handles.output = hObject;

guidata(hObject, handles);

Thus the entire initialization code is:

% Operations executed while the GUI is opening.

functionDAQ_and_StreamProcessing_OpeningFcn(hObject,

 eventdata, handles, varargin)

% Move the GUI on top-left corner

movegui(gcf, 'northwest');

% Acquire screen resolution

set(0,'units','pixel');

res=get(0,'screensize'); %Array [1 1 resH resV]

% System Objects initialization

handles.TimeScope=dsp.TimeScope('YLimits',[-1,1],

'SampleRate',44100,'ShowGrid',true,...

'Position',[res(3)/2,res(4)/3,res(3)/2.5,res(4)/2]);

handles.TxtWt=dspdemo.TextFileWriter('Filename',

 'camp.txt');

handles.TxtRd=dspdemo.TextFileReader('Filename',

 'camp.txt','SamplesPerFrame',44100);

handles.SaveWav=dsp.AudioFileWriter('Filename',

 'Audio.wav','SampleRate',44100);

% Auxiliary variables

handles.in='Nothing';

handles.out='Nothing';

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 343

handles.venin='directsound';

handles.venout='directsound';

% Update of the handles structure

handles.output = hObject;

guidata(hObject, handles);

end

2) Pop-Up Menus generation

a) AudioInput device list

It is necessary that the program automatically scans all the connected devices and finds out which

of them is an audio-acquisition device.

Each audio device has many properties. In particular, we can notice Subsystems.SubsysemType

which can be AudioInput or AudioOutput:

A short description of the device can be found into the Model field:

In order to generate a proper AudioInput device list, we need some steps:

a. storage of all the acquisition devices available into a structure called d:

global d;

d=daq.getDevices;

b. initialization of a matrix inp, which at the end of the loop will contain all the AudioInput devices

found; we manually define the first list item:

inp=[{'Select Input Device'}];

c. scanning loop; we check if a device’s SubsystemType property is AudioInput; in this case we

store its Model field into the inp matrix:

% Auxiliary variable: number of AudioInput

 devices found

i=0;

for (k=1:(length(d)))

 f=d(k).Subsystems.SubsystemType;

 if (isequal(f,'AudioInput'))

 inp=[inp,{d(k).Model}];

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 344

 i=i+1;

 end

end

d. list generation; if we found at least one AudioInput device (i>0), each cell of the matrix inp

becomes a list item:

if(i>0)

set(hObject, 'string', inp(1:end));

end

The whole code for the AudioInput device list generation is as follows:

% Automatic AudioInput device list generation

function Input_CreateFcn(hObject, eventdata,

 handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

 get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

% 'd' contains all the available acquisition

 devices

global d;

d=daq.getDevices;

% 'inp' is a matrix with all the AudioInput

 devices. The first % cell is manually defined

inp=[{'Select Input Device'}];

% Number of AudioInput Devices found

i=0;

% Scanning loop

for (k=1:(length(d)))

 % 'SubsystemType' check and update of 'inp'

 f=d(k).Subsystems.SubsystemType;

 if (isequal(f,'AudioInput'))

 inp=[inp,{d(k).Model}];

 i=i+1;

 end

end

% List generation

if(i>0)

set(hObject, 'string', inp(1:end));

end

end

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 345

The output menu provided by the GUI lists audio input devices if found.

b) AudioOutput device list

The code to find and show the list of audio output deviced connected to the personal computer is

basically equal to the previous; in this case we obviously need to check if

Subsystems.SubsystemType = AudioOutput.

The code is:

% Automatic AudioOutput device list generation

function Output_CreateFcn(hObject, eventdata,

 handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

 get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

% 'g' contains all the available devices

global g;

g=daq.getDevices;

% 'out' is a matrix with all the AudioOutput devices. The first % cell is manually defined

inp=[{'Select Output Device'}];

i=0; % Number of AudioOutput Devices found

% Scanning loop

for (k=1:(length(g)))

 % 'SubsystemType' check and update of 'out'

 f=g(k).Subsystems.SubsystemType;

 if (isequal(f,'AudioOutput'))

 inp=[inp,{g(k).Model}];

 i=i+1;

 end

end

% List generation

if(i>0)

set(hObject, 'string', out(1:end));

end

end

The menu provided by the GUI lists output audio devices if found.

The next operation the GUI has to allow is the acquisition setup.

C. Acquisition SETUP

1) Device selection

a) Input

The first step is the selection of the desired AudioInput device:

a. storage into the variable choice of the text of the item. The code is:

global d;

% Storage into 'choice' of the selected device

contents = cellstr(get(hObject,'String'));

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 346

choice=contents{get(hObject,'Value')};

b. comparison loop between choice and the Model field stored into d. When the device is

recognized, two variables are generated:

- handles.in, with the ID (e.g. Audio1);

- handles.venin, with the vendor (e.g. directsound).

If no choice has been made (the selected item is ‘Select Input Device’), handles.in = ‘Nothing’:

for (k=1:(length(d))) % Comparison Loop

 if (strcmp(choice,d(k).Model))

 handles.in=d(k).ID;

 handles.venin=d(k).Vendor.ID;

 elseif (strcmp(choice,'Select Input Device'))

 handles.in='Nothing';

 end

end

% Update handles

guidata(gcbo,handles);

Thus the entire code is:

% Operations executed when an item is selected

function Input_Callback(hObject, eventdata,

 handles)

global d;

% Storage into 'choice' of the selected device

contents = cellstr(get(hObject,'String'));

choice=contents{get(hObject,'Value')};

% Comparison loop

for (k=1:(length(d)))

 if (strcmp(choice,d(k).Model))

 handles.in=d(k).ID;

 handles.venin=d(k).Vendor.ID;

 elseif (strcmp(choice,'Select Input Device'))

 handles.in='Nothing';

 end

end

% Update handles

guidata(gcbo,handles);

end

b) Output

In case of the selection of an Output device, we will generate two auxiliary variables:

- handles.out, with the device ID;

- handles.venout, with the vendor.

% Operations executed when an item is selected

function Output_Callback(hObject, eventdata,

 handles)

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 347

global g;

% Storage into 'choice' of the selected device

contents = cellstr(get(hObject,'String'));

choice=contents{get(hObject,'Value')};

% Comparison loop

for (k=1:(length(g)))

 if (strcmp(choice,g(k).Model))

 handles.out=g(k).ID;

 handles.venout=g(k).Vendor.ID;

 elseif (strcmp(choice,'Select Output Device'))

 handles.out='Nothing';

 end

end

% Update handles

guidata(gcbo,handles);

end

2) Acquisition Mode

The user can choose between two different acquisition modes, as in the left hand of figure 4:

- continuous acquisition, which runs until the user manually stops it (using the pushbutton Stop);

- limited acquisition, which runs for a fixed time, specified by the user into an editable text box.

D. Acquisition

1) Preliminary phase and error checking

The Start pushbutton’s code is divided into many parts:

a. initialization of an empty matrix temp, in which the whole acquired data will be stored and

inizialization of a variable y which will be the effective duration of the acquisition, using the

following code:

global temp;

temp=[];

global y;

b. at this point it is necessary to check if the user made some setting mistakes, for example if no

input and/or output device was selected:

So we have to check if handles.in = ‘Nothing’. In this case, a warning message box will appears on

screen, as in the left side of fig. 5. The code is:

if (strcmp(handles.in,'Nothing'))

 % No Input device has been selected

 msgbox('Error: Select an Input device');

c. if a device was actually selected an acquisition session can be initialized (vendor =

handles.venin) and Input channels can be added (deviceID = handles.in). The code is as

follows:

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 348

else

 handles.s=daq.createSession(handles.venin);

 handles.s.addAudioInputChannel(handles.in,1:2);

d. at this point another setting error may happen dealing with the choice of the acquisition mode.

In fact, there will be three possible cases:

- only Continuous checkbox was selected;

- only Limited checkbox was selected;

- no checkbox or both of them selected.

The code to manage the acquisition selection errors is as follows:

% 2 variables in which the state of the

 ckeckboxes is stored

handles.cont=get(handles.Continuous,'Value');

handles.lim=get(handles.Limited,'Value');

if (handles.cont==1 & handles.lim==0)

 % ONLY Continuous

elseif (handles.lim==1 & handles.cont==0)

 % ONLY Limited

else

 % No checkbox or both of them

 msgbox('Error: No recording mode or both of them');

end

In case of mistake, the warning message box appears as in the right side of fig. 5:

Fig. 21. Error messages boxes appearing if any mistake occurs in the settings and acquisition mode

selection

2) Continuous Acquisition

The continuous acquisition consists in:

- background audio data acquisition;

- live plot visualization on virtual oscilloscope;

- sample storage into a text file (camp.txt);

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 349

- storage of the whole data into a matrix (temp).

The steps we need to make are:

a. setting the propositional property IsContinuous to true, and setting of the TimeScope System

Object™ (BufferLength and TimeSpan). The code is as follows:

handles.s.IsContinuous=true;

handles.TimeScope.TimeSpan=5;

handles.TimeScope.BufferLength=2*...

 (handles.TimeScope.SampleRate)*...

 (handles.TimeScope.TimeSpan);

b. initialization of the listener which stores data into a matrix (temp), stores the effective

acquisition duration into variable y, stores samples into a text file (camp.txt) and shows a live

plot on a virtual oscilloscope.

The code is:

handles.lis=addlistener(handles.s,'DataAvailable',

 @(src,event) rec_c(src,event,handles));

% Continuous acquisition in background

function rec_c(src,event,handles)

 % Update ‘temp’ with the incoming data

 temp=[temp;event.Data];

 % Storage of the duration

 y=(event.TimeStamps(end));

 % Generation of 'camp.txt' and live plot

 step(handles.TxtWt,event.Data);

 step(handles.TimeScope,event.Data);

end

c. startBackground command starts the acquisition and a message box appears confirming the

acquisition is started:

The code is:

% The acquisition starts and

 the user is warned

handles.h=msgbox('Acquisition

 started...');

startBackground(handles.s);

% Message box disappears after 0.5 seconds

pause(0.5);

delete(handles.h)

Therefore, the complete code is as follows:

if (handles.cont==1 & handles.lim==0)

 handles.s.IsContinuous=true;

 handles.TimeScope.TimeSpan=5;

 handles.TimeScope.BufferLength=2*...

 (handles.TimeScope.SampleRate)*...

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 350

 (handles.TimeScope.TimeSpan);

 handles.lis=addlistener(handles.s,

 'DataAvailable',@(src,event)

 rec_c(src,event,handles));

 handles.h=msgbox('Acquisition

 started...');

 startBackground(handles.s);

 pause(0.5); delete(handles.h)

 % % % % % % %

end

% Continuous acquisition in background

function rec_c(src,event,handles)

 temp=[temp;event.Data];

 y=(event.TimeStamps(end));

 step(handles.TxtWt,event.Data);

 step(handles.TimeScope,event.Data);

end

d. Stop acquisition

The Stop button is needed only in case of a continuous acquisition, so it is necessary a preliminar

control of the state of the checkboxes. After that, the session is stopped, the user is warned and all the

resources are released.

The code is:

function Stop_Callback(hObject, eventdata, handles)

%Checkbox control

if ((handles.cont)==1&(handles.lim)==0)

 stop(handles.s);

 h=msgbox('Stopped');

 release(handles.TxtWt);

 release(handles.TimeScope);

 release(handles.s);

 delete(handles.lis);

 clear handles.s;

 pause(1); delete(h);

end

end

3) Limited Acquisition

a) Error checking

If the user wants the acquisition in a limited time interval, he has to specify the desired duration.

So, it is necessary to check if the user typed any non numeric character using the isnan(x) function,

which is true in case x is not a number. In case of error a warning message box appears. To achieve

this behaviour, the code is:

% Get the duration inserted by the

 user

x=str2double(get(handles.Duration,'string'));

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 351

% Check if it is not a number

if (isnan(x))

 msgbox('Error: Invalid duration');

 clear handles.s;

else

 %%%%%%%

b) Acquisition

a. If x is a number, it is set as the session’s duration (rounding it to the first decimal) and as the

TimeSpan of the TimeScope, using the following code:

% Setting of the duration (rounded to the first

 decimal)

y=(ceil(x*10))/10;

handles.s.DurationInSeconds=y;

% TimeSpan and BufferLength setting

handles.TimeScope.TimeSpan=ceil(y);

handles.TimeScope.BufferLength=2*...

 (handles.TimeScope.SampleRate)*...

 (handles.TimeScope.TimeSpan);

b. listener definition, which stores the acquired data into a matrix (temp), shows a real-time plot

and stores the samples into a text file (camp.txt). The code is:

lis=addlistener(handles.s,'DataAvailable',...

 @(src,event) rec_l(src,event,handles));

% Limited Acquisition in Background

function rec_l(src,event,handles)

 % Data storage into ‘temp’

 temp=[temp;event.Data];

 % Generation of 'camp.txt' and real-time

 visualization

 step(handles.TxtWt,event.Data);

 step(handles.TimeScope,event.Data);

end

c. now the acquisition can start; at the end all the resources are released. The code is:

h=msgbox('Acquisition started...');

startBackground(handles.s);

% All the resources are released

handles.s.wait();

delete(h);

h=msgbox('Stopped');

release(handles.TxtWt); release(handles.TimeScope);

release(handles.s);

delete(lis);

clear handles.s;

pause(1);

delete(h);

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 352

The user is also warned about the start and the end of the acquisition, as in boxes in fig. 6:

Fig. 6. Boxes provided by the designed GUI to inform the user about the start and stop acquisition

The complete code is:

elseif (handles.lim==1 & handles.cont==0)

 % Get the duration inserted by the user

 x=str2double(get(handles.Duration,'string'));

 % Check if it is not a number

 if (isnan(x))

 msgbox('Error: Invalid duration');

 % clear the memory associated to the session

 clear handles.s;

 else

 % If ‘x’ is a number, setting of the

 duration (rounded to the first decimal)

 y=(ceil(x*10))/10;

 handles.s.DurationInSeconds=y;

 % TimeScope settings

 handles.TimeScope.TimeSpan=ceil(y);

 handles.TimeScope.BufferLength=2*...

 (handles.TimeScope.SampleRate)*...

 (handles.TimeScope.TimeSpan);

 % listener definition

 lis=addlistener(handles.s,'DataAvailable',

 @(src,event) rec_l(src,event,handles));

 % The acquisition starts

 h=msgbox('Acquisition started...');

 startBackground(handles.s);

 % Release all the resources

 handles.s.wait();

 delete(h); h=msgbox('Stopped');

 release(handles.TxtWt);

 release(handles.TimeScope);

 release(handles.s);

 delete(lis); clear handles.s; pause(1);

 delete(h);

 end

end

E. Post-Processing

Once the acquisition is complete, the user can:

- send the acquired data over an AudioOutput device;

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 353

- store data into an audio file;

- visualise the whole acquired data on a virtual oscilloscope.

The code relevant to each option is described in the following subsections.

1) Playback

a. First we need to check if the user really chose a device; so if handles.out = Nothing (it was

selected ‘Select Output Device’) a warning message box should appear:

if (strcmp(handles.out, 'Nothing'))

 msgbox('Error: Select an Output

 device');

else

 % Playback

end

b. if the user selected a proper device a session is created (vendor = handles.venout) and output

channels are added (ID = handles.venout); it is also disabled the minimum number of scans to

be queued:

handles.s=daq.createSession(handles.venout);

handles.s.addAudioOutputChannel(handles.out,1:2);

% Minimum number of scans is disabled

handles.s.IsNotifyWhenScansQueuedBelowAuto=false;

c. at this point we need a listener which queues data in Background:

lis=addlistener(handles.s,'DataRequired',...

 @(src,event) src.queueOutputData(temp));

d. data is queued and the transmission starts; at the end of the process, all the resources are

released:

handles.s.queueOutputData(temp);

handles.s.startBackground();

handles.s.wait();

release(handles.s); delete(lis);

clear handles.s;

So the entire code is:

function Play_Callback(hObject, eventdata,

 handles)

global temp;

% Device selection check

if (strcmp(handles.out,'Nothing'))

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 354

 msgbox('Error: Select an Output device');

else

 % Session setup

 handles.s=daq.createSession(handles.venout);

 handles.s.addAudioOutputChannel(handles.out,1:2);

 % Minimum number of scans is disabled

 handles.s.IsNotifyWhenScansQueuedBelowAuto=false;

 % listener to queue data

 lis=addlistener(handles.s,'DataRequired',...

 @(src,event) src.queueOutputData(temp));

 % queue data and start playback

 handles.s.queueOutputData(temp);

 handles.s.startBackground();

 % At the end, the resources are released

 handles.s.wait();

 release(handles.s); delete(lis);

 clear handles.s;

end

end

2) Audio file Generation

Clicking on the pushbutton Save WAV into the designed GUI, we can store the acquired data into

an audio file (Audio.wav). The loop reads samples from camp.txt (generated during the acquisition)

and stores them into Audio.wav.

Then the user is warned about the end of the process, as in boxes in fig. 7, and all the resources are

released.

The entire code is:

function Save_Callback(hObject, eventdata,

 handles)

% Reading samples from 'camp.txt' and generation

 of 'Audio.wav'

while (~isDone(handles.TxtRd))

 data=step(handles.TxtRd);

 step(handles.SaveWav,data);

end

% Warn the user and release the resources

h=msgbox('Saved');

release(handles.TxtRd);

release(handles.SaveWav);

pause(0.5);

delete(h);

end

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 355

Fig. 7. Boxes provided by the designed GUI to warn about the end of the audio file saving

3) TimeScope

This pushbutton is very useful in case of a continuous acquisition. In fact, the acquisition may last

longer than the TimeSpan of the TimeScope window. In these cases, the plot we can see at the end of

the acquisition is partial, so that the user cannot work with all the acquired data (for example we may

want to make measurements).

The pushbutton Time Scope solves this issue, defining a proper TimeSpan for the TimeScope

window (Fig. 8):

- the new TimeSpan is the variable y generated during the acquisition;

- we read samples from camp.txt;

- the read samples are shown on a virtual oscilloscope.

Fig. 8. TimeSpan has been correctly defined

The code is:

function TimeScope_Callback(hObject, eventdata,

 handles)

global y; % 'y' is the effective duration

% Defining BufferLength and a proper TimeSpan

handles.TimeScope.TimeSpan=ceil(y);

handles.TimeScope.BufferLength=2*...

 (handles.TimeScope.SampleRate)*...

 (handles.TimeScope.TimeSpan);

% Reading from 'camp.txt' and live visualization

while (~isDone(handles.TxtRd))

 data=step(handles.TxtRd);

 step(handles.TimeScope,data);

end

% Release the resources

release(handles.TimeScope); release(handles.TxtRd);

end

F. Reset

When we type a daq.getDevices command, its result is hold in memory until MATLAB® is

restarted. So, if we connect/disconnect a device, a new daq.getDevices command still gives the same

result as before.

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 356

For example, at the opening of the GUI there is a certain device enabled. Let’s now suppose that we

want to disable that device (e.g. Missaggio Stereo). In order to visualize the correct list, we need to

clear MATLAB® cache with a clear all command. Pushbutton Reset clears cache and restarts the

GUI:

function Reset_Callback(hObject, eventdata,

 handles)

close;

clear all;

h=msgbox('Restarting, please wait...');

DAQ_and_StreamProcessing;

delete(h);

end

The user is warned and when the GUI is opened again the disabled device will not be on the list

anymore.

G. Summary

a. Opening function:

% Operations executed during the GUI opening

functionDAQ_and_StreamProcessing_OpeningFcn(hObject,

 eventdata, handles, varargin)

% Positioning the items

movegui(gcf, 'northwest');

set(0,'units','pixel');

res=get(0,'screensize');

% System Objects™

% Time Scope

handles.TimeScope=dsp.TimeScope('YLimits',[-1,1],

 'SampleRate',44100,...

 'ShowGrid',true,...

'Position',[res(3)/2,res(4)/3,res(3)/2.5,res(4)/2]);

% Txt Writer and Reader

handles.TxtWt=dspdemo.TextFileWriter('Filename',

 'camp.txt');

handles.TxtRd=dspdemo.TextFileReader('Filename',

 'camp.txt',...

 'SamplesPerFrame',44100);

% Audio Writer

handles.SaveWav=dsp.AudioFileWriter('Filename', 'Audio.wav','SampleRate',44100);

% Auxiliary variables

% Dev ID

handles.in='Nothing';

handles.out='Nothing';

% Vendor

handles.venin='directsound';

handles.venout='directsound';

handles.output = hObject;

% Update handles

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 357

guidata(hObject, handles);

end

b. AudioInput device list generation:

% Automatic generation of the Input device list

function Input_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

 get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

global d;

d=daq.getDevices;

% First list item

inp=[{'Select Input Device'}];

i=0;

% Scanning loop

for (k=1:(length(d)))

 f=d(k).Subsystems.SubsystemType;

 if (isequal(f,'AudioInput'))

 inp=[inp,{d(k).Model}];

 i=i+1;

 end

end

if(i>0)

% List generation

set(hObject, 'string', inp(1:end));

end

end

c. AudioOutput device list generation:

% Automatic generation of the Output device list

function Output_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

 get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

global g;

g=daq.getDevices;

% First list item

out=[{'Select Output Device'}];

i=0;

% Scanning loop

for (k=1:(length(g)))

 f=g(k).Subsystems.SubsystemType;

 if (isequal(f,'AudioOutput'))

 out=[out,{g(k).Model}];

 i=i+1;

 end

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 358

end

if(i>0)

% List generation

set(hObject, 'string', out(1:end));

end

end

d. callback executed at the selection of an Input device:

% Callback executed at the selection of an item

function Input_Callback(hObject, eventdata, handles)

global d;

contents = cellstr(get(hObject,'String'));

choice=contents{get(hObject,'Value')};

% Scanning loop

for (k=1:(length(d)))

 if (strcmp(choice,d(k).Model))

 handles.in=d(k).ID;

 handles.venin=d(k).Vendor.ID;

 elseif (strcmp(choice,'Select Input Device')) % Error

 handles.in='Nothing';

 end

end

guidata(gcbo,handles);

end

e. callback executed at the selection of an Output device:

% Callback executed at the selection of an item

function Output_Callback(hObject, eventdata,

 handles)

global g;

contents = cellstr(get(hObject,'String'));

choice=contents{get(hObject,'Value')};

% Scanning loop

for (k=1:(length(g)))

 if (strcmp(choice,g(k).Model))

 handles.out=g(k).ID;

 handles.venout=g(k).Vendor.ID;

 % Error

 elseif (strcmp(choice,'Select Output Device'))

 handles.out='Nothing';

 end

end

guidata(gcbo,handles);

end

f. pushbutton Start:

function Start_Callback(hObject, eventdata,

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 359

 handles)

global temp; temp=[]; global y;

if (strcmp(handles.in,'Nothing')) % No device

 msgbox('Error: Select an Input device');

else % Session setup

 handles.s=daq.createSession(handles.venin);

 handles.s.addAudioInputChannel(handles.in,1:2);

 handles.cont=get(handles.Continuous,'Value');

 handles.lim=get(handles.Limited,'Value');

 if (handles.cont==1 & handles.lim==0) % Contin

 handles.s.IsContinuous=true;

 handles.TimeScope.TimeSpan=5;

 handles.TimeScope.BufferLength=2*...

 handles.TimeScope.SampleRate)*...

 handles.TimeScope.TimeSpan);

 handles.lis=addlistener(handles.s,'DataAvailable',

 @(src,event) rec_c(src,event,handles));

 handles.h=msgbox('Acquisition started...');

 startBackground(handles.s); pause(0.5);

 delete(handles.h)

 elseif (handles.lim==1 & handles.cont==0) % Lim

 x=str2double(get(handles.Duration,'string'));

 if (isnan(x)) % Wrong duration

 msgbox('Error: Invalid duration');

 clear handles.s;

 else % Limited acquisition

 y=(ceil(x*10))/10;

 handles.s.DurationInSeconds=y;

 handles.TimeScope.TimeSpan=ceil(y);

 handles.TimeScope.BufferLength=2*...

 handles.TimeScope.SampleRate)*...

 (handles.TimeScope.TimeSpan);

 lis=addlistener(handles.s,'DataAvailable',

 @(src,event) rec_l(src,event,handles));

 h=msgbox('Acquisition started...');

 startBackground(handles.s);

 handles.s.wait();

 delete(h);

 h=msgbox('Stopped');

 release(handles.TxtWt);

 release(handles.TimeScope);

 release(handles.s); delete(lis);

 clear handles.s;

 pause(1); delete(h);

 end

 else % No recording mode

 clear handles.s;

 msgbox('Error: No recording mode or both of

 them');

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 360

 end

end

function rec_c(src,event,handles) % Continuous

 temp=[temp;event.Data];

 y=(event.TimeStamps(end));

 step(handles.TxtWt,event.Data);

 step(handles.TimeScope,event.Data);

end

function rec_l(src,event,handles) % Limited

 temp=[temp;event.Data];

 step(handles.TxtWt,event.Data);

 step(handles.TimeScope,event.Data);

end

guidata(hObject,handles);

end

g. pushbutton Stop:

function Stop_Callback(hObject, eventdata,

 handles)

if ((handles.cont)==1&(handles.lim)==0)

 stop(handles.s); % Stop acquisition

 h=msgbox('Stopped');

 release(handles.TxtWt);

 release(handles.TimeScope);

 release(handles.s); delete(handles.lis);

 clear handles.s; pause(1); delete(h);

end

end

h. pushbutton Play:

function Play_Callback(hObject, eventdata, handles)

global temp;

if (strcmp(handles.out,'Nothing')) % Error

 msgbox('Error: Select an Output device');

else % Playback

 handles.s=daq.createSession(handles.venout);

 handles.s.addAudioOutputChannel(handles.out,1:2);

 handles.s.IsNotifyWhenScansQueuedBelowAuto=false;

 lis=addlistener(handles.s,'DataRequired',...

 @(src,event) src.queueOutputData(temp));

 handles.s.queueOutputData(temp);

 handles.s.startBackground();

 handles.s.wait();

 release(handles.s); delete(lis);

 clear handles.s;

end

end

i. pushbutton Save WAV:

http://www.ijaera.org/

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 361

function Save_Callback(hObject, eventdata,

 handles)

while (~isDone(handles.TxtRd))

 data=step(handles.TxtRd); % Read from txt

 step(handles.SaveWav,data); % Write on WAV

end

h=msgbox('Saved'); release(handles.TxtRd);

release(handles.SaveWav); pause(0.5); delete(h);

end

j. pushbutton TimeScope:

function TimeScope_Callback(hObject, eventdata,

 handles)

global y;

handles.TimeScope.TimeSpan=ceil(y);

handles.TimeScope.BufferLength=2*...

 (handles.TimeScope.SampleRate)*...

 (handles.TimeScope.TimeSpan);

while (~isDone(handles.TxtRd))

 data=step(handles.TxtRd); % Read from txt

 step(handles.TimeScope,data); % Plot

end

release(handles.TimeScope); release(handles.TxtRd);

end

k. pushbutton Reset:

function Reset_Callback(hObject, eventdata,

 handles)

close; clear all; % Clear cache

h=msgbox('Restarting, please wait...');

DAQ_and_StreamProcessing; delete(h);

end

III. CONCLUSIONS

In this paper, the detail of design of a GUI in Matlab environment in order to perform audio data

acquisition and stream processing has been presented. The toolboxes involved are Data Acquisition,

DSP and GUIDE, using the so-called System Objects, a very useful facility provided by Matlab. The

GUI allows also to manage errors and warnings and a lot of tests demonstrate it works very well. The

next step is to apply this design for a specific application, in particular for biological sounds

acquisition and processing.

Conflict of interest: The authors declare that they have no conflict of interest.

Ethical statement: The authors declare that they have followed ethical responsibilities.

REFERENCES

[1] https://www.mathworks.com/products/daq.html

[2] https://it.mathworks.com/help/daq/ref/daq.getdevices.html

[3] https://it.mathworks.com/help/daq/ref/daq.createsession.html

[4] https://it.mathworks.com/help/daq/ref/addanaloginputchannel.html

http://www.ijaera.org/
https://www.mathworks.com/products/daq.html
https://it.mathworks.com/help/daq/ref/daq.getdevices.html
https://it.mathworks.com/help/daq/ref/daq.createsession.html
https://it.mathworks.com/help/daq/ref/addanaloginputchannel.html

International Journal of Advanced Engineering Research and Applications

(IJA-ERA)

Volume – 3, Issue – 6

October – 2017

www.ijaera.org 2017, IJA-ERA - All Rights Reserved 362

[5] https://it.mathworks.com/help/daq/ref/addaudioinputchannel.html

[6] https://it.mathworks.com/help/daq/ref/startforeground.html#bt960af-2

[7] https://it.mathworks.com/help/daq/ref/startbackground.html#bt9z7gd-3

[8] https://it.mathworks.com/help/daq/ref/dataavailable.html

[9] https://it.mathworks.com/help/daq/ref/iscontinuous.html

[10]https://it.mathworks.com/help/daq/ref/addanalogoutputchannel.html

[11]http://it.mathworks.com/help/daq/ref/addaudiooutputchannel.html

[12] https://it.mathworks.com/help/daq/ref/queueoutputdata.html

[13]https://it.mathworks.com/help/daq/ref/startforeground.html#bt960af-3

[14] https://it.mathworks.com/help/daq/ref/startbackground.html#bt9z7gd-4

[15]https://it.mathworks.com/help/daq/examples/acquire-continuous-and-background-data-using-ni-

devices.html

[16] https://it.mathworks.com/products/dsp-system.html

[17] https://it.mathworks.com/discovery/stream-processing.html

[18] https://it.mathworks.com/help/dsp/gs/what-are-system-objects.html?searchHighlight=system%20objects

[19] https://it.mathworks.com/help/dsp/gs/system-objects-methods.html

[20] https://it.mathworks.com/help/dsp/ref/dsp.audiofilereader-class.html

[21] https://it.mathworks.com/help/dsp/ref/dsp.audiofilewriter-class.html

[22] https://it.mathworks.com/help/dsp/ref/dsp.timescope-class.html#zmw57dd0e292591

[23] https://it.mathworks.com/help/dsp/ref/dsp.sinewave-class.html

[24]https://it.mathworks.com/help/dsp/examples/creating-new-kinds-of-system-objects-for-file-input-and-

output.html#zmw57dd0e386

[25] https://it.mathworks.com/discovery/matlab-gui.html

[26] https://it.mathworks.com/videos/handles-and-other-inputs-to-guide-callbacks-97328.html

http://www.ijaera.org/
https://it.mathworks.com/help/daq/ref/addaudioinputchannel.html
https://it.mathworks.com/help/daq/ref/startforeground.html#bt960af-2
https://it.mathworks.com/help/daq/ref/startbackground.html#bt9z7gd-3
https://it.mathworks.com/help/daq/ref/dataavailable.html
https://it.mathworks.com/help/daq/ref/iscontinuous.html
https://it.mathworks.com/help/daq/ref/addanalogoutputchannel.html
http://it.mathworks.com/help/daq/ref/addaudiooutputchannel.html
https://it.mathworks.com/help/daq/ref/queueoutputdata.html
https://it.mathworks.com/help/daq/ref/startforeground.html#bt960af-3
https://it.mathworks.com/help/daq/ref/startbackground.html#bt9z7gd-4
https://it.mathworks.com/help/daq/examples/acquire-continuous-and-background-data-using-ni-devices.html
https://it.mathworks.com/help/daq/examples/acquire-continuous-and-background-data-using-ni-devices.html
https://it.mathworks.com/products/dsp-system.html
https://it.mathworks.com/discovery/stream-processing.html
https://it.mathworks.com/help/dsp/gs/what-are-system-objects.html?searchHighlight=system%20objects
https://it.mathworks.com/help/dsp/gs/system-objects-methods.html
https://it.mathworks.com/help/dsp/ref/dsp.audiofilereader-class.html
https://it.mathworks.com/help/dsp/ref/dsp.audiofilewriter-class.html
https://it.mathworks.com/help/dsp/ref/dsp.timescope-class.html#zmw57dd0e292591
https://it.mathworks.com/help/dsp/ref/dsp.sinewave-class.html
https://it.mathworks.com/help/dsp/examples/creating-new-kinds-of-system-objects-for-file-input-and-output.html#zmw57dd0e386
https://it.mathworks.com/help/dsp/examples/creating-new-kinds-of-system-objects-for-file-input-and-output.html#zmw57dd0e386
https://it.mathworks.com/discovery/matlab-gui.html
https://it.mathworks.com/videos/handles-and-other-inputs-to-guide-callbacks-97328.html

