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Abstract: This work reports on a theoretical investigation of superlattices based on Cd1-xZnxS quantum 

dots embedded in an insulating material. These structures, assumed to a series of flattened cylindrical 

quantum dots with a finite barrier at the boundary, are studied using the Kronig – Penney method when 

the well width depends on the superlattice period. The fundamental miniband has been computed, for 

electrons, as a function of zinc composition for different inter-quantum dot separations. As is found, 

the fundamental miniband width decreases with the zinc composition and the superlattice period 

separately. Moreover, this study is of a great interest for designing novel nano devices, particularly, 

the nonvolatile memories. 
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I. INTRODUCTION 

Films of Cd1−xZnxS have attracted attention for a long time [1-10]. This is, essentially, related to the 

potentiality of Cd1−xZnxS as a window material in hetero junction solar cells [5-6].   

For quantum dots (QDs) based on the Cd1-xZnxS ternary alloy, their interest has been exhibited in 

several fields [11-14]. For our part, we envisage, since several years, to use Cd1−xZnxS QDs grown on 

nominal and vicinal Si surfaces [15-17] in order to promote novel nano devices such as the non - 

volatile memories. Thus, we can cite (i) our work made on the Cd1-xZnxS QDs which considered the 

spherical geometry and an infinite potential model [18] (ii) our investigations based on the spherical 

geometry with a finite potential model [19-20]. However, the spherical geometry model is not 

commode to study the coupling between QDs. In order to around this difficulty, we have recommended 

the flattened cylindrical geometry with a finite potential model [21-33]. We have achieved several 

investigations concerning the electronic band parameters of super lattices based on Cd1-xZnxS quantum 

dots inserted in a dielectric matrix [23-30].  In this context, our interest has been focused, in a previous 

study, on the calculation of the electronic band parameters with use the Kronig - Penney potential 

method [23]. It is worth to notice that in this study, the well width does not depend on the superlattice 

period and has a unique value for all the cases studied. Within this approximation, we have calculated 

the ground and the first excited minibands as well as the longitudinal effective mass for both electrons 

and holes. 

The objective of the present work is to extend the last study in such a way that the well width depends 

on the superlattice period. The paper is presented as follows: after an introduction, we report an outline 

on the theoretical formulation and results. Conclusions are presented in the last section. 

II. MODELING 

It is more realistic to use the spherical geometry in order to investigate the electronic properties       of 

Cd1-xZnxS QDs embedded in a dielectric matrix. Figure 1- a shows the geometry used to describe a 

chain of Cd1-xZnxS QDs. Nevertheless, along a common direction of spherical Cd1-xZnxS QDs, one can 
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observe that electrons and holes see a succession of flattened cylinders of radius R and effective height 

L. With the assumption that L is lower than R, the quantum confinement along transversal directions 

can be ignored. Thus, the Cd1-xZnxS multi – quantum dot structure under study can be regarded as a 

QDs superlattice (SL) along the longitudinal confined direction denoted by z. For the Cd1-xZnxS QD 

superlattice, the Cd1-xZnxS flattened cylinders QDs correspond to wells whereas the host dielectric 

lattice behaves as a barrier of height U0. The inter-QD separation, labeled as d, corresponds to the 

superlattice period. In addition, the electron and hole states are assumed to be uncorrelated. This 

approximation leads to a problem of one particle in a one-dimensional potential. In the present work, 

we suggest the Kronig - Penney potential (Figure 1- b). In this case, the electron and hole states can be 

calculated using the effective Hamiltonian: 
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where the subscripts e and h refer to electrons and holes respectively, *

he,m is the effective mass of 

carriers. In deriving the Hamiltonian He,h, we have considered the effective mass theory (EMT) and 

the band parabolicity approximation (BPA). The   difference of the effective mass between the well 

and the barrier has been disregarded. The secular equation corresponding to the Hamiltonian He,h is 

given by [23]: 

For the bound states: 
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For the resonant states:  
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Where, kz is the wave vector parallel to the z direction and Ee,h corresponds to the eigenenergies. 

III. RESULTS AND DISCUSSION 

From Eqs (2-a) and (2-b), we have calculated, for electrons, the width 1eΔE  of the fundamental 

miniband ( e1 -miniband) in the case of Cd1-xZnxS QD structures. Values of parameters used in these 

calculations are taken from Ref [21] and listed in Table 1. Values of the electron effective masses              

for Cd1-xZnxS with different Zn compositions have been deduced using the linear interpolation. The 

well width L is considered as depending on the superlattice period d in such a way that L =  
d

10
. 
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Figure-1(a): A schematic diagram of Cd1-xZnxS QD super lattices according to the flattened cylindrical 

geometry – (b) The barrier potential in the framework of the Kronig – Penney model.

Table 2 illustrates the obtained values of 1eΔE  as a function of zinc composition for different inter-

quantum dot   separations. It was revealed that, for any inter-QD separation, 1eΔE decreases as a 

function of the Zn composition. This result is, only, due to the barrier potential height U0e which 

increases with x [21]. Indeed, the well width L is the same, for a given d value, and the effective mass 
*

em  remains practically unvaried for all Zn compositions. On the other hand, for any composition x, 

1eΔE decreases with the increase of the SL period d. The difference between the e1 - miniband widths 

for CdS QDs is equal to      0.66 eV while that of the ZnS-related QDs is of 0.36 eV. For intermediate 

compositions, this difference is located between the two extreme values.  

Table 1. Parameters used to calculate the width 1eΔE  of the fundamental miniband for electrons in 

the case of Cd1-xZnxS QDs superlattices [21] (m0 is the free electron mass) 

X 
            0

*
e

m

m

 

U0(eV)

  

0.0             0.16 0.10  

0.2  0.25  

0.4  0.45  

0.6  0.75  

0.8  1.50  

1.0            0.28 2.00  
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Moreover, for Cd1-xZnxS QDs with low zinc compositions, the order of magnitude of the width 1eΔE  

is important and shows a significant coupling between the QDs. This effect can induce metallic 

behavior in a dielectric host material. 

At intermediate zinc compositions, 
1eΔE is lower and the coupling is, therefore, inferior. Concerning 

the high zinc compositions, 1eΔE  is extremely low. In the last case, Cd1-xZnxS QDs can be supposed 

as isolated.  

Table 2. Widths of the e1 - miniband (eV) for electrons in the case of Cd1-xZnxS QD superlattices 

d (nm) 

x 

1.5 1.7 1.9 2.1 2.3 2.5 

0.0 1.04 0.81 0.65 0.52 0.44 0.38 

0.2 0.89 0.68 0.54 0.44 0.36 0.30 

0.4 0.76 0.58 0.46 0.37 0.30 0.25 

0.6 0.66 0.50 0.38 0.33 0.23 0.19 

0.8 0.51 0.37 0.26 0.19 0.14 0.10 

1.0 0.41 0.27 0.19 0.12 0.08 0.05 

For comparison with results obtained by using the Kronig-Penney potential of the previous work [23], 

we report in Table 3, widths of e1 - miniband as calculated in this work. As can be seen, the e1 - 

miniband widths of the present work are higher for all the cases studied. This result can be explained 

in terms of the well width. Indeed, this parameter is inferior in the present work. 

Table 3. Widths of the e1 - miniband (eV) for electrons in the case of Cd1-xZnxS QD superlattices 

obtained in the previous work (L = 1 nm in all the cases studied) [23] 

d (nm) 

x 

1.5 1.7 1.9 2.1 2.3 2.5 

0.0 0.73 0.59 0.49 0.37 0.31 0.26 

0.2 0.68 0.53 0.41 0.31 0.25 0.22 

0.4 0.59 0.44 0.31 0.23 0.18 0.15 

0.6 0.49 0.33 0.24 0.15 0.11 0.08 

0.8 0.33 0.19 0.10 0.07 0.04 0.03 

1.0 0.23 0.13 0.5 0.04 0.01 0.01 

 IV. CONCLUSION 

We investigated the electronic properties of superlattices based on Cd1-xZnxS embedded in a dielectric 

matrix. To describe the QDs, we have considered the flattened cylindrical geometry with a finite 

potential barrier at the boundary. Using the Kronig – Penney model when the well width is the tenth 

of the SL period, we have computed the ground miniband for electrons. Calculations have been 

effectuated as a function of Zn composition for different inter-quantum dot separations. An analysis 

of the results has showed that the e1 - miniband width decreases with x and d separately. In addition, 

for Cd1-xZnxS QDs with low zinc compositions, the magnitude order of the fundamental miniband 

width is important and shows a significant coupling between the QDs. Moreover, the potential model 

adopted in the previous work does not account for the coupling as much as than the one of the present 

works. 

In the applied physics, this study opens a new route for designing new devices based on Cd1-xZnxS 

QDs particularly the non – volatile memories. 
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