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Abstract: The Burr Type X distribution is considered as a probability model for the lifetime of the 

product. Sampling plans in which items that are put to test, to collect the life of the items in order to 

decide upon accepting or rejecting a submitted lot, are called reliability test plans. A test plan to 

determine the termination time of the experiment for a given sample size, producer’s risk and 

termination number is constructed. The preferability of the present test plan over similar plans exists 

in the literature is established with respect to time of the experiment. Results are illustrated by an 

example. 
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1. INTRODUCTION 

The variable sampling plans are developed by proposing a decision rule to accept or reject a submitted 

lot of products based on inspected measurable quality characteristic for a sample product taken from 

the lot. As required by the principles of statistical inference, it is necessary to specify the probability 

distribution of variable characteristic. In the absence of such specification, it is taken as the well-known 

normal distribution. However, if normal distribution is not a good fit to the data under consideration, 

the decision process constructed on this basis would be misleading. At the same time appeal to central 

limit theorem as a justification to normality assumption is not always valid as the sample size in quality 

control data is not large enough to adopt normality. In this backdrop, Sobel and Tischendrof (1959) 

developed reliability test plans for exponential distribution. Goode and Kao (1961) constructed 

sampling plans for Weibull distribution. Gupta and Groll (1961) constructed sampling plans for 

Gamma distribution. Sampling plans similar to those of Gupta and Groll (1961) are developed by 

Kantam and Rosaiah (1998) for half-logistic distribution and Kantam et al. (2001) for Log-logistic 

distribution, Rosaiah and Kantam (2005) for the inverse Raleigh distribution, Rosaiah et al. (2006) for 

exponentiated log-logistic distribution and Ravikumar et al. (2016) for Burr Type X distribution. 

Sampling plans in a new approach for log-logistic distribution are suggested by Kantam et al. (2006). 

An economic reliability test plans are constructed by some of the authors are Rosaiah et al. (2007a) 

for Pareto distribution, Rosaiah et al. (2007b)  for Exponentiated Log-Logistic distribution, Rosaiah et 

al. (2007c) for Inverse Rayleigh distribution, Aslam and Kantam (2008) for truncated life tests in the 

Birnbaum-Saunders distribution, Srinivasa Rao et al. (2009) for Marshall - Olkin extended Lomax 

distribution, Kantam and Sriram (2013) for Rayleigh Distribution, Rosaiah et al. (2014) for Type – I 
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Generalized Half Logistic Distribution, Subbarao et al. (2015) for Size Biased Lomax Distribution and 

Subba Rao et al. (2016) for A New T-X Model Distribution.  Our interest in this paper is working of a 

variable sampling plan parallel to the construction of a theoretical parametric test of hypothesis. Of 

these, the present paper deals with the construction of sampling plan with a new approach and its 

comparison with similar existing plans are given in Section 2. The operating characteristic is presented 

in Section 3. The results are illustrated by an example towards the end of Section 3. 

In scaled densities, a null hypothesis about scale parameter such as ‘the scale parameter is greater than 

or equal to a specified value’ is equivalent to saying that the ’average life of a product governed by the 

given scaled density exceeds a specified average life’. Acceptance of this hypothesis by a test 

procedure means that the sample life times used for testing indicate that the lot from which the sample 

is drawn is a good lot. Similarly, rejection of the hypothesis implies that the lot is a bad lot. In this 

paper, we discussed the parallel between the testing of hypothesis in scaled densities and sampling 

plans. 

In this paper, we assume that the lifetime of product follows a Burr Type X distribution (BTXD). For 

the case that a lot of such products are submitted for inspection, we develop a economic reliability test 

sampling plan, derive its operating characteristic function and give the corresponding decision rule. 

The proposed sampling plan, along with the operating characteristic, is given in Section 2. The 

description of tables is given in Section 3. The results are explained by an example in Section 4.     

II. THE SAMPLING PLAN 

We assume that the lifetime of a product follows Burr Type X Distribution. The probability density 

function and cumulative distribution function of the Burr Type X Distribution are given by, 

𝑓(𝑥; 𝑘, 𝜆) = 2𝑘
𝑥

𝜆2
𝑒−(𝑥 𝜆⁄ )2(1 − 𝑒−(𝑥 𝜆⁄ )2)𝑘−1; x>0, k>0, 𝜆>0                                           (2.1) 

𝐹(𝑥; 𝑘, 𝜆) = (1 − 𝑒−(𝑥 𝜆⁄ )2)𝑘; x>0, k>0,𝜆>0                                                                       (2.2) 

where 𝜆 is the scale parameter and k are the shape parameter. 

Thus, generalized Rayleigh distribution and Burr type X distributions are one and the same. 

BTXD can be considered as a model for lifetimes, if the lifetimes show a large variability and is shown 

to be a decreasing or increasing failure rate model. 

Consider a null hypothesis” H0: 𝜆 > 𝜆0”. If BTXD is assumed as the model of a variable representing 

lifetimes of some items that have life and eventual failure, the above hypothesis is regarding the 

average life of those items in the population. If the H0 is accepted on the basis of some sample lifetimes 

collected through a life testing experiment from out of a submitted lot of such items using any 

admissible statistical test procedure, we may conclude that the submitted lot has a better average life 

than what is specified accordingly the lot that can be termed as a good lot and can be accepted. 

Ravikumar et al. (2016) constructed the minimum sample size required to make a decision about the 

lot given the waiting time in terms of 𝜆0 (i.e., x/𝜆0) and acceptance number c, some risk probability, 

say α. With a specified 𝜆0 of 𝜆, the probability of detecting c or less failures (probability of accepting 

the lot) in a sample of size n is given by 
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∑ (𝑛
𝑖
)𝑝𝑖(1 − 𝑝)𝑛−𝑖𝑐

𝑖=0 ,                                                                                                     (2.3) 

where p = (x; k, 𝜆0). 

 For 𝜆 > 𝜆0, the above probability of acceptance should increase. Therefore, if α is a prefixed 

risk probability, this means 

∑ (𝑛
𝑖
)𝑝𝑖(1 − 𝑝)𝑛−𝑖 ≥ 1 − 𝛼𝑐

𝑖=0                                                                                              (2.4) 

For a given 𝜆0 and hence of x/𝜆0, this is a single inequality in two unknowns n and c assuming that the 

parameter α is known. Because c is always less than n, inequality (2.4) can be solved for n with 

successive values of c from zero onwards. The earliest value of n that satisfies the inequality (2.4) are 

given for k = 2, P*=1 − α = 0.75, 0.90, 0.95, 0.99 and x/𝜆0 = 0.628, 0.942, 1.257, 1.571, 2.356, 3.141, 

3.927, 4.712 by Ravikumar et al. (2016) along with the associated performance characteristics like 

operating characteristics, producer’s risk, scope for variability of σ etc. A typical portion of tables of 

Ravikumar et al. (2016) for BTXD are reproduced in the Table 1 for k = 2. 

In the present investigation, inequality (2.4) can be considered in a different way. Let us fix n and let r 

be a natural number less than n, so that as soon as the rth (r = c + 1) failure is observed, the process is 

stopped, and the lot is rejected. Given 𝜆>𝜆0, the probability of such a rejection should be as small as 

possible. That is 

∑ (𝑛
𝑖
)𝑝𝑖(1 − 𝑝)𝑛−𝑖 < 𝛼𝑛

𝑖=𝑟                                                                                                   (2.5) 

Specifying n as a multiple of r, say lr (l = 1, 2, . . .), inequality (2.5) can be regarded as an inequality 

in a single unknown in terms of x/𝜆 with known k. With the choice of r, l, α, inequality (2.5) can be 

solved for the earliest p, say p0, from which the value of x/𝜆0 can be obtained by inverting the F(x; k, 

𝜆) given by (2.1). The specified population average in terms of 𝜆0 can be used here to get the value of 

x called the termination time. These are presented in Table 2 for various values of n, r = 1(1)10, k = 2 

at p*=1-α = 0.95, 0.99. 

Table 1: Minimum sample sizes necessary to assert the average life to exceed a given value 𝜆0 with 

probability p*, the corresponding acceptance number c and for k=2 using binomial probabilities. 

p* c 
x/λ0 

0.628 0.942 1.257 1.571 2.356 3.142 3.927 4.712 

0.95 

0 27 8 4 2 1 1 1 1 

1 43 12 6 4 2 2 2 2 

2 58 16 8 5 3 3 3 3 

3 71 20 10 7 4 4 4 4 

4 84 24 12 8 5 5 5 5 

5 97 28 14 9 6 6 6 6 

6 109 32 16 11 8 7 7 7 

7 121 35 18 12 9 8 8 8 

8 133 39 20 13 10 9 9 9 

9 145 42 21 15 11 10 10 10 

10 157 46 23 16 12 11 11 11 

0.99 0 42 11 5 3 1 1 1 1 
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1 60 17 8 5 3 2 2 2 

2 76 21 10 6 4 3 3 3 

3 91 26 12 8 5 4 4 4 

4 106 30 14 9 6 5 5 5 

5 120 34 16 11 7 6 6 6 

6 133 38 19 12 8 7 7 7 

7 147 42 21 14 9 8 8 8 

8 160 46 22 15 10 9 9 9 

9 172 49 24 16 11 10 10 10 

10 185 53 26 18 12 11 11 11 

Table 2: Life test termination in units of scale parameter (x/𝜆0) for BTXD with k = 2. 

p*=(1-α) r n=2r n=3r n=4r n=5r n=6r n=7r n=8r n=9r n=10r 

0.95 

1 0.41631 0.37349 0.34609 0.32635 0.31113 0.29887 0.28866 0.27997 0.27243 

2 0.61204 0.53723 0.49251 0.46141 0.43796 0.41933 0.40401 0.39107 0.37993 

3 0.70465 0.6123 0.55866 0.52189 0.49441 0.47272 0.45495 0.44 0.42716 

4 0.76053 0.65693 0.59773 0.55748 0.52753 0.50397 0.48473 0.46856 0.4547 

5 0.79874 0.68719 0.62412 0.58145 0.54981 0.52498 0.50472 0.48773 0.47317 

6 0.8269 0.70937 0.64342 0.59897 0.56607 0.54029 0.51929 0.50168 0.48661 

7 0.84872 0.7265 0.6583 0.61245 0.57859 0.55207 0.53049 0.51241 0.49694 

8 0.86627 0.74023 0.67021 0.62325 0.58859 0.56149 0.53944 0.52098 0.50519 

9 0.88076 0.75154 0.68002 0.63213 0.59683 0.56924 0.5468 0.52803 0.51198 

10 0.89298 0.76107 0.68828 0.6396 0.60375 0.57575 0.55299 0.53395 0.51768 

p*=(1-α) r n=2r n=3r n=4r n=5r n=6r n=7r n=8r n=9r n=10r 

0.99 

1 0.27099 0.24408 0.22671 0.21413 0.20439 0.19651 0.18994 0.18434 0.17947 

2 0.47889 0.42267 0.38868 0.36488 0.34685 0.33248 0.32063 0.3106 0.30194 

3 0.58654 0.51248 0.46899 0.439 0.41647 0.39863 0.38399 0.37164 0.36101 

4 0.65374 0.56769 0.518 0.48401 0.45862 0.43859 0.42218 0.40838 0.39652 

5 0.70059 0.60579 0.55167 0.51485 0.48744 0.46587 0.44823 0.43341 0.4207 

6 0.73557 0.63407 0.57657 0.53762 0.50869 0.48596 0.4674 0.45182 0.43846 

7 0.76295 0.65609 0.59593 0.55529 0.52517 0.50152 0.48224 0.46607 0.45221 

8 0.78513 0.67387 0.61153 0.56951 0.53841 0.51403 0.49416 0.47751 0.46324 

9 0.80356 0.68859 0.62443 0.58127 0.54936 0.52437 0.50401 0.48695 0.47235 

10 0.81919 0.70105 0.63533 0.5912 0.5586 0.53308 0.51231 0.49491 0.48002 

III. COMPARATIVE STUDY 

In order to compare the present sampling plan with that of Ravikumar et al. (2016), the entries common 

for both the approaches are presented for k = 2; α = 0.05, 0.01 in Table 3. The entries given in the first 

row are corresponding to present test plan and those given in the second row are obtained by 

Ravikumar et al. (2016). All the entries in Table 3 show that for a given n, r(r = c + 1), the values of 

x/𝜆0-the scaled termination time is uniformly smaller for the present reliability test plans than those of 

Ravikumar et al. (2016), resulting in savings in experimental time. 
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Table 3: Proportion of life test termination time for sampling plans of Ravikumar et al. (2016) and the 

present sampling plans with producer’s risk α = 0.05, 0.01. 

n n=2r n=3r n=4r n=5r n=6r n=7r n=8r n=9r n=10r 

r α=0.05 

1 

  

0.41631 

1.571 

  

  

0.34609 

1.257 

  

  

  

  

  

  

0.28866 

0.942 

  

  

  

  

2 

  

0.61204 

1.571 

0.53723 

1.257 

  

  

  

  

0.43796 

0.942 

  

  

  

  

  

  

  

  

4 

  

  

  

  

  

  

  

0.55748 

0.942 

  

  

  

  

  

  

  

  

  

  

r α=0.01 

1 

  

  

  

0.24408 

1.571 

  

  

0.21413 

1.257 

  

  

  

  

  

  

  

  

  

  

2 

  

  

  

  

  

0.38868 

1.257 

  

  

  

  

  

  

  

  

  

  

  

  

3 

  

0.58654 

1.571 

  

  

  

  

  

  

  

  

0.39863 

0.942 

  

  

  

  

  

  

4 

  

0.65374 

1.571 

0.56769 

1.257 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

5 

  

  

  

  

  

  

  

  

  

0.48744 

0.942 

  

  

  

  

  

  

  

  

IV. OPERATING CHARACTERISTIC FUNCTION 

If the true but unknown life of the product deviates from the specified life of the product it should 

result in a considerable change in the probability of acceptance of the lot based on the sampling plan. 

Hence the probability of acceptance can be regarded as a function of the deviation of specified average 

from the true average. This function is called operating characteristic function of the sampling plan. 

Specifically, if F(x/𝜆) is the cumulative distribution function of the lifetime random variable of the 

product, 𝜆0 corresponds to specified life, we can write 

F(x/𝜆) =F[(x/𝜆0). (𝜆0/𝜆)]                                                                                                         (3.1) 

where 𝜆 corresponds to true but unknown average life. The ratio 𝜆0/𝜆 in the right-hand side (R.H.S) of 

equation (3.1) can be taken as a measure of changes between true and specified lives. 

For instance (𝜆0/𝜆) < 1 implies that the true mean life is more than the declared life leading to more 

acceptance probability or less failure risk. Similarly, (𝜆0/𝜆) > 1 implies less acceptance probability or 

more failure risk. Hence giving a set of hypothetical values, say 𝜆0/𝜆 = 0.1(0.1)1.9, we can have the 

corresponding acceptance probability for the given sampling plan. Here we have selected some plans 
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and the operating characteristic (O.C.) values of these plans are given in Table 4 and the corresponding 

O.C. curves are also drawn as shown in Fig.1. 

Table 4: Operating Characteristic (O.C.) values of sampling plans (n,r,x/𝜆0) for k=2. 

 

 

 

λ/λ0 

n=2,r=1 n=6,r=2 n=10,r=2 n=12,r=3 n=8,r=4 

x/λ0 x/λ0 x/λ0 x/λ0 x/λ0 

0.41631 0.27099 0.53723 0.42267 0.46141 0.36488 0.55866 0.46899 0.76053 0.65374 

1-α=0.95 

(Graph -

1) 

1-α=0.99 

(Graph -

2) 

1-α=0.95 

(Graph -

3) 

1-α=0.99 

(Graph -

4) 

1-α=0.95 

(Graph -

5) 

1-α=0.99 

(Graph -

6) 

1-α=0.95 

(Graph -

7) 

1-α=0.99 

(Graph -

8) 

1-α=0.95 

(Graph -

9) 

1-α=0.99 

(Graph -

10) 

0.1 0.99999 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

0.2 0.99990 0.99998 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

0.3 0.99952 0.99991 0.99999 1.00000 0.99999 1.00000 1.00000 1.00000 1.00000 1.00000 

0.4 0.99850 0.99973 0.99994 0.99999 0.99994 0.99999 1.00000 1.00000 1.00000 1.00000 

0.5 0.99641 0.99934 0.99965 0.99995 0.99968 0.99995 0.99996 0.99999 0.99999 1.00000 

0.6 0.99270 0.99864 0.99861 0.99978 0.9987 0.99979 0.99971 0.99996 0.99990 0.99999 

0.7 0.98679 0.9975 0.99567 0.99927 0.99589 0.9993 0.99844 0.99977 0.99921 0.99990 

0.8 0.97808 0.99579 0.98875 0.99802 0.98914 0.99807 0.9938 0.99900 0.99572 0.99938 

0.9 0.96598 0.99334 0.97480 0.99529 0.97522 0.99535 0.98054 0.99653 0.98324 0.99716 

1.0 0.95000 0.99000 0.95000 0.99000 0.95000 0.99000 0.94999 0.99000 0.95000 0.99000 

1.1 0.92970 0.98559 0.91055 0.98065 0.90912 0.9804 0.89186 0.97531 0.88148 0.97156 

1.2 0.90482 0.97996 0.85370 0.96543 0.84927 0.96456 0.79894 0.94676 0.76914 0.93284 

1.3 0.87522 0.97294 0.77884 0.94242 0.76954 0.94029 0.67264 0.89822 0.61935 0.86507 

1.4 0.84098 0.96438 0.68814 0.90985 0.6723 0.90551 0.52533 0.82525 0.45394 0.76455 

1.5 0.80233 0.95415 0.58649 0.86645 0.56332 0.85873 0.37674 0.7276 0.30032 0.63648 

1.6 0.75968 0.94212 0.48066 0.81178 0.45069 0.79941 0.24632 0.61054 0.17867 0.49467 

1.7 0.71362 0.92821 0.37791 0.74648 0.34309 0.7283 0.14614 0.48425 0.09556 0.35682 

1.8 0.66485 0.91234 0.28458 0.67229 0.24782 0.64755 0.07848 0.36109 0.04603 0.23812 

1.9 0.61417 0.89448 0.20506 0.59190 0.16952 0.56050 0.03810 0.25214 0.02004 0.14686 

 

Figure 1: Operating Characteristic Curves of Sampling Plan (n,r,x/𝜆0) at k=2. 

Illustration: Consider the following ordered failure times of the release of software given in terms of 

hours from the starting of the execution of the software denoting the times at which the failure of the 

software is experienced (Wood, 1996). This data can be regarded as an ordered sample of size n = 12 
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with observations: 

{xi  : i = 1, 2, . . . 16} = {519, 968, 1430, 1893, 2490, 3058, 3625, 4422, 5218, 5823, 6539, 7083}. 

The confidence level of the decision processes assured by the sampling plan only if the lifetimes follow 

BTXD. We have verified this for the above sample data by Q − Q plot at k= 2, the value is 0.996624. 

Case I: Let the required average lifetime be 1000 hours and the testing time be x = 942 hours, this 

leads to ratio of x/𝜆0 = 0.942 with a corresponding sample size n = 12 and an acceptance number c = 

1, which are obtained from Table 1 for 1 − α = 0.95. Therefore, the sampling plan for the above sample 

data is (n = 12, c = 1, x/𝜆0 = 0.942). Based on the observations, we have to decide whether to accept 

the product or reject it. We accept the product only if the number of failures before 942 hours is less 

than or equal to 1. In the above sample of 12 only one failure occurred at 519 hours before x = 942 

hours. Therefore, we accept the product using the sampling plan constructed by Ravikumar et al. 

(2016). 

Case II: From Table 2, the entry against r = 2 (r = c + 1) under the column 6r is 0.43796. Since the 

acceptable mean life is given to be 1000 hours for Burr Type X distribution. If the termination time is 

given by ‘x0’ the table value says that x0 = 0.43796 that is x0 = 0.43796 × 1000 = 437.96 = 438 hours 

(approx.). 

Using the present sampling plan, this test plan will be implemented as follows: Select 12 items from 

the submitted lot and put them to test. If the 2nd failure is realized before 438th hour of the test, reject 

the lot otherwise accept the lot in either case terminating the experiment as soon as the 2nd failure is 

reached or 438th hour of the test time is reached whichever is earlier. In the case of acceptance, the 

assurance is that the average life of the submitted products is at least 1000 hours. 

In this approach, we see that in the sample of 12 failures there is no failure before 438th hour, therefore 

we accept the product. 

In both approaches the sample size, acceptance number (termination number), the risk probability and 

the final decision about the lot are the same. But the decision on the first approach can be reached at 

the 519th hour and that in the second approach reached at the 438th hour, thus second approach (the 

present sampling plan) requiring a less waiting time and also minimum experimental cost. Hence, the 

present sampling plan is preferred. 
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