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Abstract: Corona Virus Disease (COVID-19) is an infectious disease caused by severe acute 

respiratory syndrome corona virus 2 (SARS-CoV-2). The virus is spread between people during close 

contact via small droplets produced by coughing, sneezing, talking etc. In the present work, the 

transmission dynamics of the COVID- 19 is studied using SEIHR epidemic compartmental model. 

Basic reproduction number is computed with the help of the method of Next Generation Matrix. 

Stability of equilibrium points of the model is discussed. Sensitivity analysis of the model is performed 

to determine the relative importance of the model parameters. Simulations are made to illustrate the 

mathematical results graphically. 
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I. INTRODUCTION 

The infectious disease COVID-19 can affect human of almost all ages worldwide. The disease was first 

identified in December 2019 in Wuhan city, which is the capital of China's Hubei province. On 24 April 

2020, more than 2.71 million conform cases have been reported in 110 countries and territories. More 

than 191,228 deaths and more than 745,092 people have recovered [1]. Wuhan is the most seriously 

affected city in China. When the infection started in Wuhan, the available medical resources of the 

health system for diagnosing and treating the infected cases were not sufficient, because of that number 

of infections kept on increasing rapidly. Some hospitals began to receive confirmed cases and started 

to provide adequate hospital beds to infected individuals for diagnosis and treatment. Because of 

sufficient medical resources, the number of infectious population started decreasing in Wuhan. 

Therefore, the medical resources can be considered as one of the main reasons for controlling the 

transmission of COVID-19 (during the period of Jan. 23rd to Mar. 6th, 2020) [2]. 

Mathematical compartmental models help to understand transmission dynamics of infectious disease 

from various angles ([3], [4], [5], [6], [7], [8]). These models have been effective tools to understand 

and propose control measures of the infectious diseases. A number of mathematical models are 

developed to observe and analyze the rapid spread of infectious disease in order to control and minimize 

the transmission of them through quarantine and other measures. Wang et al. built a time-dependent 

model of COVID-19 to study the effect of medical resources on transmission of COVID-19 in Wuhan 

[2]. Y. Li et al. established the time series models based on different mathematical formulas according 

to the variation law of the original data of Wuhan city [5]. 

While modeling infectious diseases, it is very important to determine the model parameter which is the 

most sensitive in the transmission of the disease. So, sensitivity analysis is important in mathematical 

studies. By the study of sensitivity analysis, Chitnis et al. determined important parameters in the spread 

of malaria [8]. Also, Phaijoo and Gurung discussed sensitivity of model parameters in the transmission 
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of dengue disease [9]. In the present work, we study the transmission dynamics of COVID - 19 

following the work of Wang et al. [2]and perform sensitivity analysis to identify the most sensitive 

parameter in the model of COVID-19. 

II. MATHEMATICAL MODEL OF COVID-19 

For the formulation of the model, total population at time 𝑡 is denoted by 𝑁(𝑡), it is subdivided into 

seven classes: Susceptible: 𝑆(𝑡), Pre-stage Exposed: 𝐸1(𝑡), Post-stage Exposed: 𝐸2(𝑡) Infected with 

mild symptoms:  𝐼1(𝑡), Infected with serious symptoms: 𝐼2(𝑡), Hospitalized: 𝐻(𝑡) and Recovered: 

𝑅(𝑡) . So, 𝑁(𝑡)  =  𝑆(𝑡)  +  𝐸1(𝑡) + 𝐸2(𝑡) + 𝐼1(𝑡) + 𝐼2(𝑡) +  𝐻(𝑡)  +  𝑅(𝑡).  It is assumed that 

hospitalized individual is isolated and cannot contact with susceptible individual. Infectious individuals 

include 𝐸2(𝑡), 𝐼1(𝑡) and 𝐼2(𝑡). Incubation period of COVID-19 is as long as 2 to 14 days [5]. In the pre-

stage exposed: 𝐸1(𝑡),  people are infected but not infectious. But in post-stage exposed: 𝐸2(𝑡), people 

are infectious, so they can infect to others. Transmission of the disease COVID-19 is described in the 

flow diagram fig.1. 

The birth rate and natural death rate are denoted by μ. Susceptible individuals 𝑆(𝑡) can be infected with 
COVID-19 by effective contact with infectious individuals. We consider that 𝑐  represents the mean 
number of infectious individuals contacting with 𝑆(𝑡); 𝛽 is the transmission probability and 𝜃 (0 <
 𝜃 <  1) accounts for reduction in transmissibility of 𝐸2(𝑡) compare to 𝐼2(𝑡). Assume that q is the 
proportion of 𝐸2(𝑡 )to keep in the quarantine and 𝑝 =  1 −  𝑞 represents the un-quarantined proportion 
of post-stage exposed individuals. So, p is infectious. Assume that 𝜃1 (0 < 𝜃1 <  1) accounts for 
reduction in transmissibility of 𝐼1(𝑡) compare to 𝐼2(𝑡). Due to opening the hospital, 𝜀  represents the 
exponential decay of contact rate of infected individuals to susceptible individuals [2]. Let 𝜀1 denotes 
the minimum proportion of contact rate of infected individuals to susceptible individuals under the 
measure of opening the hospital. 

In the present model, the susceptible individuals get infected of COVID -19 when they come in contact 

with the infectious individuals 𝐸2(𝑡) , 𝐼1(𝑡) and 𝐼2(𝑡) at the rates  
𝑐𝛽𝜃𝑝𝐸2

𝑁
,

𝑐𝛽𝜃1𝜀1𝐼1

𝑁
  

and  
𝑐𝛽𝜀1𝐼2 

𝑁
  respectively. So, the susceptible individuals move to the class 𝐸1(𝑡) at the rate of  𝛼, where 

𝛼 =  
𝑐𝛽𝜃𝑝𝐸2

𝑁
+ 

𝑐𝛽𝜃1𝜀1𝐼1
𝑁

+ 
𝑐𝛽𝜀1𝐼2

𝑁
 

 
Infected individuals 𝐼1(𝑡)) and 𝐼2(𝑡)can be admitted to hospital at the rate of 𝜂1 and 𝜂2 respectively. 

 

 
                                  Figure 1: Flow Diagram of Transmission of COVID-19 
 

The mathematical model of the transmission of COVID-19 [2] described by the fig.1 is as follows: 
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𝑑𝑠

𝑑𝑡
= 𝜇𝑁 − 𝑐𝜃𝛽𝑝𝐸2

𝑆

𝑁
− 𝑐𝜃1𝛽𝜖1𝐼1

𝑆

𝑁
− 𝑐𝛽𝜖1𝐼2

𝑆

𝑁
− 𝜇𝑆 

𝑑𝐸1

𝑑𝑡
= 𝑐𝜃𝛽𝑝𝐸2

𝑆

𝑁
+ 𝑐𝜃1𝛽𝜖1𝐼1

𝑆

𝑁
+ 𝑐𝛽𝜖1𝐼2

𝑆

𝑁
− (𝜉 + 𝜇)𝐸1 

𝑑𝐸2

𝑑𝑡
= 𝜉𝐸1 − (𝜎 + 𝜇)𝐸2 

𝑑𝐼1
𝑑𝑡

= 𝑎𝜎𝐸2 − (𝛿 + 𝜂1 + 𝛾1 + 𝜇)𝐼1 

𝑑𝐼2
𝑑𝑡

= (1 − 𝑎)𝜎𝐸2 + 𝛿𝐼1 − (𝜂2 + 𝑑1 + 𝜇)𝐼2 

𝑑𝐻

𝑑𝑡
= 𝜂1𝐼1 + 𝜂2𝐼2 − (𝛾ℎ + 𝑑ℎ + 𝜇)𝐻 

𝑑𝑅

𝑑𝑡
=  𝛾1𝐼1 + 𝛾ℎ𝐻 − 𝜇𝑅 

 

 

 

 

 

 (2.1) 

Model parameters are described in the following table (1) 
 

Table 1: Parameter Description Table [13] 
Parameters Description Value Dimension 

𝑐 Contact rate 13.8  per day 

𝛽 Transmission probability 0.036 Dimensionless 

1/𝜉 Pre-stage exposed period 1.52 per day 

1/𝜎 Post- stage exposed period 6,67 per day 

𝛿 Transition rate from 𝐼1 to𝐼2 0.2 per day 

𝑎 Proportion to E2 entering𝐼1 0.8 Dimensionless 

𝜂1 Average hospitalization rate of𝐼1 0.31 per day 

𝜂2 Average hospitalization rate of 𝐼2 0.7 per day 

𝜃1  Infection reduction fraction of𝐼1 0.87 Dimensionless 

𝜃 Infection reduction fraction of𝐼2 0.72 Dimensionless 

𝛾1  Recovery rate of 𝐼1 1/12.5 per day 

𝛾ℎ  Recovery rate of 𝐻 0.05 per day 

𝑑1 Disease induced death rate of𝐼2 0.055 per day 

𝑑ℎ Disease induced death rate of𝐻 0.049 per day 

𝜀1  Proportion of contact rate 0.1 Dimensionless 

 

A. Positivity, Existence and Uniqueness of Solution 

Theorem 1.  The solutions of the system (2.1) are nonnegative for all t > 0. 

Proof: Suppose   𝑀 =  {(𝑆,  𝐸1, 𝐸2, 𝐼1, 𝐼2, 𝐻, 𝑅 ) 𝜖 ℝ7: 0 ≤   𝑆, 𝐸1, 𝐸2, 𝐼1, 𝐼2, 𝐻, 𝑅} 
To prove 𝑀 is positively invariant, we observe the behaviors of the state variables in 𝑀. 

a) At the boundary, 𝑆 =  0, we have, 
𝑑𝑠

 𝑑𝑡
= 𝜇𝑁 > 0 

Thus the solution cannot cross the boundary 𝑆 =  0. 

b) At the boundary, 𝐸1  =  0, we have 
𝑑𝐸1

𝑑𝑡
= 𝑐𝜃𝛽𝑝𝐸2

𝑆

𝑁
+ 𝑐𝜃1𝛽𝜖1𝐼1

𝑆

𝑁
+ 𝑐𝛽𝜖1𝐼2

𝑆

𝑁
 

If  𝐸1 =  0, 𝑆 >  0,  𝐸2 >  0,  𝐼1 >  0, 𝐼2 >  0, then 
𝑑𝐸1

𝑑𝑡
> 0 

If  𝐸1 =  0, 𝑆 >  0,  𝐸2 >  0,  𝐼1 >  0, 𝐼2 =  0, then 
𝑑𝐸1

𝑑𝑡
> 0 
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If  𝐸1 =  0, 𝑆 >  0,  𝐸2 >  0,  𝐼1 = 0,  𝐼2 >  0, then 
𝑑𝐸1

𝑑𝑡
> 0 

If  𝐸1 =  0, 𝑆 >  0,  𝐸2 = 0, 𝐼1 >  0,   𝐼2 >  0, then 
𝑑𝐸1

𝑑𝑡
> 0 

If  𝐸1 =  0, 𝑆 =  0,  𝐸2 >  0, 𝐼1 >  0,  𝐼2 >  0, then 
𝑑𝐸1

𝑑𝑡
> 0 

In each case  
𝑑𝐸1

𝑑𝑡
≥ 0, so the solution cannot cross the boundary  𝐸1  =  0. 

c) At the boundary,  𝐸2  =  0, we have 
 𝑑𝐸1

𝑑𝑡
=  𝜉 𝐸2. 

If  𝐸2 = 0,  𝐸1 >  0 then 
𝑑𝐸2

𝑑𝑡
> 0. Thus the solution cannot cross the boundary 𝐸2 = 0. 

d) At the boundary, 𝐼1 =  0, we have 
𝑑𝐼1
𝑑𝑡

= 𝑎𝛼 𝐸2. 

If  𝐼1 =  0,  𝐸2 >  0   then 
 𝑑𝐼1
𝑑𝑡

> 0. Thus the solution cannot cross the boundary 𝐼1 =  0 

e) At the boundary, 𝐼2 =  0, we have 
𝑑𝐼2
𝑑𝑡

= (1 − 𝑎)𝛼 𝐸2 + 𝛿𝐼1. 

If 𝐼2 =  0,  𝐸2 >  0, 𝐼1 >  0, then 
𝑑𝐼2

𝑑𝑡
> 0. 

If  𝐼2 =  0,  𝐸2 >  0, 𝐼1 =  0, then  
𝑑𝐼2
𝑑𝑡

> 0. 

If   𝐼2 =  0,  𝐸2 =  0,  𝐼1 >  0,  then  
𝑑𝐼2
𝑑𝑡

> 0. 

Thus the solution cannot cross the boundary  𝐼2 =  0 

f) At the boundary,𝐻 =  0, we have 
𝑑𝐻

𝑑𝑡
= 𝜂1𝐼1 + 𝜂2𝐼2 .                   . 

If 𝐻 =  0,  𝐼1 >  0,  𝐼2 >  0, then 
𝑑𝐻

𝑑𝑡
> 0.  

If  𝐻 =  0,  𝐼1 >  0,  𝐼2 =  0, then 
𝑑𝐻

𝑑𝑡
> 0. 

If  𝐻 =  0, 𝐼1 =  0,  𝐼2 >  0, then 
𝑑𝐻

𝑑𝑡
> 0.  

Thus the solution cannot cross the boundary 𝐻 =  0. 

g) At the boundary, 𝑅 =  0, we have 
𝑑𝑅

𝑑𝑡
= 𝛾1𝐼1 + 𝛾ℎ𝐻. 

If  𝑅 =  0,  𝐼1 >  0, 𝐻 >  0, then 
𝑑𝑅

𝑑𝑡
> 0.  

If  𝑅 =  0,  𝐼1 >  0, 𝐻 =  0, then 
𝑑𝑅

𝑑𝑡
> 0.  

If  𝑅 =  0,  𝐼1 =  0, 𝐻 >  0, then 
𝑑𝑅

𝑑𝑡
> 0.  

Thus the solution cannot cross the boundary 𝑅 =  0. 

Therefore, the solution of the system (2.1) cannot exit 𝑀 by crossing the boundary of any of the state 

variables. 

Assume that the system of equation (2.1) has the following initial conditions 

𝑆 >  0,  𝐸1  ≥  0,  𝐸2 ≥  0 𝐼1 >  0,  𝐼2 >  0, 𝐻 ≥  0, 𝑅 ≥  0         (2.2) 

Theorem 2. Consider the system of equations (2.1) with nonnegative initial conditions (2.2). Solutions 

to the system of equations (2.1) with initial conditions (2.2) exist and are unique for all 𝑡 ≥  0. 
Proof: Let𝑥(𝑡)  =  (𝑆,  𝐸1, 𝐸2, 𝐼1, 𝐼2, 𝐻, 𝑅 ) 𝜖 ℝ7. Then the system (2.1) can be written in the form 
𝑑𝑥

𝑑𝑡
= 𝑔(𝑥). Let 𝑔𝑖 denote the components of the vector field𝑔  for 𝑖 =  1, 2, 3, 4, 5, 6, 7, we have, 

𝑔1 = 𝜇𝑁 − 𝑐𝜃𝛽𝑝𝐸2

𝑆

𝑁
− 𝑐𝜃1𝛽𝜖1𝐼1

𝑆

𝑁
− 𝑐𝛽𝜖1𝐼2

𝑆

𝑁
− 𝜇𝑆 

𝑔2 = 𝑐𝜃𝛽𝑝𝐸2

𝑆

𝑁
+ 𝑐𝜃1𝛽𝜖1𝐼1

𝑆

𝑁
+ 𝑐𝛽𝜖1𝐼2

𝑆

𝑁
− (𝜉 + 𝜇)𝐸1 
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𝑔3 = 𝜉𝐸1 − (𝜎 + 𝜇)𝐸2 

𝑔4 = 𝑎𝜎𝐸2 − (𝛿 + 𝜂1 + 𝛾1 + 𝜇)𝐼1 

𝑔5 = (1 − 𝑎)𝜎𝐸2 + 𝛿𝐼1 − (𝜂2 + 𝑑1 + 𝜇)𝐼2 

𝑔6 = 𝜂1𝐼1 + 𝜂2𝐼2 − (𝛾ℎ + 𝑑ℎ + 𝜇) 

𝑔7 = 𝛾1𝐼1 + 𝛾ℎ𝐻 − 𝜇𝑅 

The vector field𝑔 consists of the algebraic polynomials of state variables. Thus  𝑔𝑖𝜖 ℝ7are continuous 

autonomous functions and partial derivatives   
𝜕𝑔𝑖

𝜕𝑆
,  

𝜕𝑔𝑖

𝜕𝐸1

,
𝜕𝑔𝑖

𝜕𝐸2

,
𝜕𝑔𝑖

𝜕𝐼1
,

𝜕𝑔𝑖

𝜕𝐼2
,

𝜕𝑔𝑖

𝜕𝐻
,  

𝜕𝑔𝑖

𝜕𝑅
 exist and are 

continuous. Hence by Existence and Uniqueness Theorem, a unique solution of the system              
𝑑𝑥

𝑑𝑡
=

𝑔(𝑥)  exists for any initial condition 𝑥(0)𝜖 ℝ7[10]. 

 

B. Equilibrium Points and Basic Reproduction Number 

The system of equations (2.1) has two equilibrium points; the disease free equilibrium point         𝑷𝟎 =

(
𝑺

𝑵
, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎) and endemic equilibrium point 𝑷𝟏 = (𝑺∗, 𝑬𝟏

∗, 𝑬𝟐
∗, 𝑰𝟏

∗, 𝑰𝟐
∗, 𝑯∗, 𝑹∗). Further, basic 

reproduction number is defined as the average number of secondary infections caused by single 

infectious individual during his/her entire infectious life time [11], [12]. The number is denoted by 𝑹𝟎. 

Assume that 𝑭 is the matrix of transmission terms and 𝑽 is the matrix of transition terms of the system 

(2.1). R0 is defined as the spectral radius of the matrix 𝑭𝑽−𝟏 i.e., 𝝆 (𝑭𝑽−𝟏 )and is obtained by using 

the Next Generation Matrix Method [6], [11], [12]. For the model (2.1); 

 

 

𝐹 =

[
 
 
 
 0

𝑐𝛽𝜃𝑝𝐸2
𝑁

𝑐𝛽𝜃1𝜀1𝐼1
𝑁

𝑐𝛽𝜀1𝐼2
𝑁

𝜉 0 0 0
0 0 0 0
0 0 0 0 ]

 
 
 
 

 ,           𝑉 =    [

−𝑢 0 0 0
𝜉 −𝑤 0 0
0 𝑎𝜎 −𝑣 0
0 (1 − 𝑎)𝜎 𝛿 −𝑞

]  ,          

 

Where  𝑢 =  𝜇 + 𝜉,  𝑣 = 𝛿 + 𝜂1 + 𝛾1 + 𝜇,  𝑤 =  𝜎 + 𝜇 ,   𝑞 =  𝜂2 + 𝑑1 + 𝜇 
Thus the basic reproduction number at the disease free equilibrium point 𝑃0   is 

𝑅0 = √
𝛽𝑐𝜉 (𝑝𝜃𝑣𝑞 + 𝜀1𝜎(𝛾1 − 𝑎𝛾1 +  𝛿 + 𝜂1 + 𝜇 + 𝑎(𝜃1𝑞 − 𝜂1 − 𝜇)))

𝑢𝑣𝑞𝑤
 

The disease free equilibrium point always exists in the absence of infection of the disease that is 𝑅0 <

1 and endemic equilibrium point always exists when 𝑅0 > 1. 

 

C.  Stability Analysis 

Theorem 3. (Local Stability of Disease free equilibrium) Disease free equilibrium point of the system 

of equations (2.1) is locally asymptotically stable if 𝑅0 < 1 and unstable if 𝑅0 > 1. 

Proof: About the disease free equilibrium point, the Jacobian matrix for the system of equations (2.1) 

has the block matrix 
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𝐽 =  [
𝑀1 𝑀2

0 𝐹 − 𝑉
] 

If all the eigenvalues of the Jacobian matrix 𝐽have negative real parts, then the disease free equilibrium 

is asymptotically stable [12]. Since 𝐽  is upper triangular matrix, eigenvalues of J are those of 𝑀1  and 

 𝐹 −  𝑉.  The eigenvalue of matrix 𝑀1 is − 𝜇 <  0  and  −𝑞 <  0. Now stability of the disease free 

equilibrium depends on the eigenvalues of 𝐹 –  𝑉  where 𝐹  is non-negative and 𝑉  is non-singular 

𝑀 matrix [13]. Again, all the eigenvalues of 𝐹 –  𝑉 have negative real parts if and only if 𝜌(𝐹 𝑉−1)  <
 1 [12]. Here, 𝑅0 =  𝜌(𝐹 𝑉−1),  therefore the disease free equilibrium is locally asymptotically stable 

if 𝑅0 <  1. 

 If 𝜌(𝐹 𝑉−1 > 1 then 𝑠(𝐹 –  𝑉) > 1 [12]. That means, if 𝑅0 = 𝜌(𝐹 𝑉−1) > 1, spectral abscissa of the 

matrix 𝐹 –  𝑉  is positive. It shows that, at least one eigenvalue of 𝐹 –  𝑉 has positive real part and so, 

the disease free equilibrium point is unstable. Hence, the disease free equilibrium is unstable if  

𝑅0 > 1. 

 

Theorem 4.   The system of equations (2.1) has an endemic equilibrium point  𝑃1  =

 (𝑆∗, 𝐸1
∗, 𝐸2

∗, 𝐼1
∗, 𝐼2

∗, 𝐻∗, 𝑅∗)which exists only if 𝑅0 > 1. 

Proof:  In the deterministic model (2.1) of COVID-19, if the basic reproduction number 𝑅0increases 

through unity, the stability of disease free equilibrium changes from stable to unstable. The disease 

free equilibrium point 𝑃0  is locally asymptotically stable when 𝑅0 < 1 and unstable when 𝑅0 > 1. So, 

at 𝑃0  the system attains a bifurcation at   𝑅0 = 1, which is called the backward bifurcation. At 𝑅0 =
1, we have 

𝛽𝑐𝜉 (𝑝𝜃𝑣𝑞 + 𝜀1𝜎(𝛾1 − 𝑎𝛾1 +  𝛿 + 𝜂1 + 𝜇 + 𝑎(𝜃1𝑞 − 𝜂1 − 𝜇)))            (3.1) 

On substituting the values of the model parameters from table 1 in (3.1), we get 𝛽 =  0.0193. Thus 

the equilibrium point 𝑃0  is asymptotically stable if 𝛽< 0.0193 and 𝑃0  is unstable if 𝛽 >  0.0193. The 

study of the stability of the model (2.1) shows that  𝑃1  is unstable when  𝑃0 is asymptotically stable for 

𝛽 <  0.0193 and it is stable when 𝛽 >  0.0193. Therefore, 𝛽 =  0.0193 is the bifurcation value 

(refer figure 2 and 3). 

 
 

Figure 2: Bifurcation Diagram of COVID-19. 
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Figure 3: Change of basic reproduction number with respect to 𝛽. 

 

D. Sensitivity Analysis 

For sensitivity analysis we use the normalized sensitivity index [8], [9]. The normalized sensitivity 

index of variable 𝑅0 that depends on parameter α is defined as 

𝛾𝛼
𝑅0 =

𝜕𝑅0

𝜕𝛼
×

𝛼

𝑅0
 

We take 𝛼 =  𝜇, 𝑐, 𝜉, 𝛽, 𝛿, 𝜂1, 𝜂2 , 𝜃, 𝜃1, 𝛾1, 𝑑1, 𝜀1 

 

We evaluate the sensitivity indices at the baseline parameter values using definition as given in the 

table 1. The positive value of the sensitivity indices describes that prevalence of the disease increases 

with increases in parameter value. Here 𝛾𝛽
𝑅0 = 0.5 means increasing (or decreasing) the transmission 

probability by 10%, increases (or decreases) 𝑅0 by 5%. The negative value of the sensitivity indices 

describes that prevalence of the disease decreases with increases in parameter value.  

Here 𝛾𝜂1

𝑅0 =-0.0.006 means increasing (or decreasing) the value of 𝜂
1
by 10%, decreases (or increases) 

𝑅0 by 0.06%. Table 2 shows that contact rate and probability of transmission rate is most positive 

sensitive parameters to the basic reproduction number among other parameters. 

 

Table 2: Sensitivity Analysis of Model Parameters 
S N Parameters Baseline Values Sensitivity Indices 

1 𝜇 0.000039 -0.00030 

2 𝑐 13.5 0.5 

3 𝜉 1/1.52 0.00029 

4 𝛽 0.036 0.5 

5 𝛿 0.2 0.0099 

6 𝜂1 0.31 -0.0059 

7 𝜂2 0.7 0.0094 

8 𝜃1 0.87 0.0157 

9 𝜃 0.72 0.4853 

10 𝛾1 1/12.5 -0.0015 

11 𝑑1 0.055 0.00073 

12 𝜀1 0.1 -0.0015 
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III.  NUMERICAL RESULT AND DISCUSSION  

Simulation of the results is carried out to observe the effect of the parameters of the model on the 

transmission dynamics and spread of COVID-19. For the simulation, numerical values are used from 

table 2. Fig. 4 describes the population dynamics of exposed, infectious, hospitalized and recovered 

individuals in the transmission dynamics of COVID-19. With the decreasing population size of 

exposed individuals, the infectious population size increases.  After the hospitals begin to confirm the 

COVID-19 cases and provide the supportive medical resources, the infectious population size starts 

decreasing because the infectious individuals move to the hospitals. The hospitalized population size 

increases initially due to the hospitalization of infectious individuals, the population decreases later 

due to the death and recovery from the disease (refer figure 4). 

 

Figures 5 to 8 are showing the simulated analysis for the sensitivity of the model parameters in the 

system (2.1). These figures describe the dynamics of infectious population with different values of 

model parameters. The infectious population increases with increasing the value of the parameters 

𝑐, 𝛽, 𝜉, 𝛿, since these parameters have positive sensitivity indices (table 2). 

 

 
Figure 4: Human population of six states. 

 

 
Figure 5: Effect of different value of contact rate on I1. 
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Figure 6: Effect of different value of β on I1. 

 
Figure 7: Effect of different value of η1 on I1. 

 

 
Figure 8: Effect of different value of γ1 on I1. 

 

Since the parameters 𝜂
1
, 𝛾

1
 have negative sensitivity indices, these parameters contribute to decrease 

the infectious population. Thus, the parameters with positive sensitivity index increase the infectious 

population and the parameters with negative sensitivity index decrease the infectious population. From 

table 2, 𝑐 and 𝛽 are the most positive parameters; and 𝜂
1
is the most negative sensitive parameter. So, 
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when 𝑐 and 𝛽 increase, the transmission of disease increases and when 𝜂
1  

increases, the transmission 

of the disease decreases. Therefore, we can reduce the infection of the disease by controlling the 

contact rate and transmission rate of the disease. 

 

IV. CONCLUSION 

COVID-19 is currently significant issue in the world. In the present work, we have discussed the 

SEIHR model of COVID-19 taking pre-stage and post stage exposed classes; mild and serious 

infectious classes. We observed the system (2.1) has bifurcation near the disease free equilibrium point 

at the transmission rate 𝛽 = 0.0193. We performed the sensitivity analysis to determine the sensitive 

model parameter in the transmission of COVID-19. We observed that contact rate 𝑐, transmission rate 

𝛽and hospitalization rate η1 most important sensitive model parameters. Increasing the contact rate and 

transmission rate of disease increases the infectious population and increasing the hospitalization rate 

of infected people, decrease the infectious population. Thus, we can decrease the prevalence of 

COVID-19 by increasing the hospitalization rate of infected people and decreasing the direct contact 

between the susceptible and infected individual. Therefore, our study suggests that to reduce the 

contact rate 'Lock Down' the city and minimize the transmission of disease, quarantine of infected 

individual are most important works for control the infectious disease COVID-19. 
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