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Abstract: This paper focuses on determination of optimum cutting conditions for the efficient hard 

milling performance of the selected process parameters using hybrid method of response surface 
methodology and evolutionary computing approaches. A central composite rotatable design is used to 

design the experimentations. The responses of cutting temperature, tool wear and metal removal rate 
are measured and analysed the data to develop the mathematical models. The adequacies of the models 
are tested at 95% confidence level. To achieve the set goal of this study, genetic and simulated 

annealing algorithms are used for predicting and optimizing the process parameters. The result shows 
that the simulated annealing algorithm is effectively produced better optimal solutions than the genetic 

algorithm. The actual experimental results were in agreement with the prediction. 
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I.  INTRODUCTION 

During past few decades, the field of metal cutting witnessed numerous developments. In this 

sense, hard milling is an emerging technology to machine the steels with hardened (i.e more than 
45HRC) state. The potential advantages are to eliminate many process chains during the manufacturing 
of a component as compared with conventional route [1].Recently, few research studies related to 

implementation of experimental design for hard milling process have been reported by many 
researchers [2-5]. The empirical models have been developed to predict the cutting forces and surface 

roughness in terms of cutting speed, feed, radial depth of cut and axial depth of cut in hard milling of 
AISI H13 steel [3]. The cutting performance of PVD coated carbide and CBN tools in hard milling of 
JIS S55C was studied by Okada et al. [4]. Çaliskan et al. [5] experimentally investigated the influence 

of type of coating, cutting speed, feed rate and depth of cut on the cutting forces and surface roughness 
in hard milling of AISI O2 (∼61 HRC) cold work tool steel using coated carbide inserts. Therefore, 

the industrial research on hard milling is considerably important in order to understand the 
effectiveness of the process. The quality and productivity of hard milled surface depends on three main 

parameters such as cutting temperature, tool wear and MRR. These characteristics are controlled by a 
number of process parameters like cutting speed, feed per tooth, width and axial depth of cut, tool 
geometry and work piece hardness etc. Nowadays, modeling and optimization methodology have 

become vital play role in the manufacturing industry to meet required product quality and productivity. 
Therefore, proper setting of hard milling process parameters is essential to ensure production 

efficiency. The present work deals with optimization of hard milling process parameters in order to 
enhance the surface quality as well as to obtain the best parameters of the hard milling covers in terms 
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of cutting temperature, tool wear and metal removal rate. A Central Composite Rotatable Design 
(CCRD) was used to design the experimentations. Design-expert version 6.0.8 package was used to 

analyze the data and to develop the models. The adequacy of the model was tested at 95% confidence 
level. Further, the developed models were employed with Genetic Algorithm (GA) and Simulated 

annealing Algorithm (SA) to determine the optimal process parameters resulting in minimum cutting 
temperature, tool wear and maximum metal removal rate. The evolutionary approaches widely applied 
to solve single and/or multi-objective problems in various fields [6-23]. 

II.  MODELING AND OPTIMIZATION OF HARD MILLING PROCESS 

A. Response Surface Methodology 

Response Surface Methodology (RSM) is a combination of statistical experimental design 
fundamentals, regression modeling techniques, and optimization methods [24]. The main advantage 
of RSM is the reduced number of experimental runs needed to provide sufficient information for 

statistically acceptable results. It is a faster and less expensive method for gathering research results 
than the classical method. The CCRD design is one of the most important experimental design used in 

process optimization studies. This design was applied in the present work with the objective to develop 
an empirical model of the process and to obtain a more precise estimate of the optimum operating 
conditions for the factors involved. The data obtained from the CCRD design was fitted with a second 

order polynomial equation to evaluate the parametric influences on the various hard milling criteria as 
follows 
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where y denotes the predicted response of the process, Xi refers to the coded levels of the 
factors, β0, βi, βii, and βij are the regression coefficients, and ε is the statistical error.The adequacy of 
the model was determined by evaluating the lack of fit, coefficient of regression (R2) and the Fisher 

test value (F-value) obtained from the analysis of variance (ANOVA).Statistical significance of the 
model and model variables was determined at the 5% probability level (p < 0.05). The software uses 

the quadratic model equation shown above to build response surfaces. 

B. Genetic Algorithm 

The genetic algorithm is a global search algorithm, which is designed to mimic the principles 

of biological evolution in natural genetic systems [8]. At first, the fitness of each individual is 
determined according to their closeness to the optimum solution, and individuals are categorized 

according to their fitness. After that, the reproduction, crossover, and mutation operators are applied 
to each generation to evolve a new generation. Reproduction is the random selection of copies of the 
solution from the population according to their fitness value to create one or more offspring variables. 

The parameters of individuals that perform well are crossed to try to create better-performing 
individuals. The new set of individuals is called the first generation and each individual is evaluated 

for a new fitness value. This process is repeated until the population cannot create better performing 
individuals. The general flow chart for genetic algorithm optimization as shown in Fig.1. 
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Figure 1: GA and SA flow chart 

C. Simulated Annealing Algorithm 

Simulated annealing is derived from the physical process of heating to a high temperature and 
slowly lowering the temperature to reach a minimum energy state [11]. Simulated annealing is a point-
by-point method. The algorithm starts with an initial point (either randomly or heuristically 

constructed) and a high temperature T. A second point is created at random in the vicinity of the initial 
point and the difference in the function values (ΔE) is calculated. If the second point has a smaller 

function value, the point is accepted; otherwise, the point is accepted with a probability exp  (−ΔE/T). 
This completes one iteration of the SA procedure. In the next generation, another point is created at 
random in the neighborhood of the current point and the metropolis algorithm is used to accept or 

reject the point. That is, the probability of the next point being a minimum value depends on the 
difference in function values on these two points, or on ΔE = E (t + 1) − E (t), and is calculated using 

the Boltzmann probability distribution: P (E (t +1)) = min [1, exp (−ΔE kT)]. In order to simulate the 
thermal equilibrium at every temperature, a number of points (n) are usually tested at a particular 
temperature before reducing the temperature. The flow chart for optimization using SA as depicted in 

Fig.1.  
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III.  HARD MILLING EXPERIMENTS 

A CCRD was used to investigate the effects of four independent variables, feed per tooth (A), 

radial depth of cut(B), axial depth of cut(C) and cutting speed(D), on the dependent variables, CT,TW 
and MRR. The factors and levels used during the milling experiments are listed in Table I. Typical 

hardened and tempered 100MnCrW4 (AISI O1) tool steel (50HRC) was taken for analysis. The main 
applications are making molds, dies, gauges and bushings etc. All the specimens were in the form of 
150 mm×150mm×25mm blocks. A series of 30 experiments with three replications was performed on 

CNC Mazak-Nexus 510C-II machine equipped with 12000rpm and 25KW power drive motor is used. 
A photograph of experimental setup is shown in Fig.2. 

Table 1: Parameters and levels 

Levels 

Process Parameters 

A(mm/z) B(mm) C(mm) D(m/min) 

-2 0.05 0.2 0.2 200 

-1 0.1 0.3 0.4 250 

0 0.15 0.4 0.6 300 

+1 0.2 0.5 0.8 350 

+2 0.25 0.6 1.0 400 

A Taegu Tec cutter body, 2S-TE90AP 320-W20-09, is used to hold the inserts. The coated 
(TiN+TiAlN) carbide tool insert, Taegu Tec APKT 09T320R-EM with 2mm nose radius is used in 

this study. All of the experiments were run under dry conditions and each test was started with a new 
cutting edge. During machining, a cutting temperature was captured using non-contact fluke type 

(Type 8839) pyrometer with an emissivity value of 0.19 (i.e. Rake face of the tool).Tool wear was 
measured by means of a toolmaker’s microscope and was examined by the use of SEM and EDAX on 
JSM-6510LV unit. The observed tool wear for 4th experiment as depicted in Fig.3. MRR is calculated 

from the difference in weight of the workpiece before and after machining divided by the total 
machining time. In the experiment, the workpiece was weighed using a digital balance with 0.001 
gram accuracy. 
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Figure -2: Mazak VMC and cutting zone Figure-3- Tool wear for 4th Experiment 

IV.  RESULTS AND DISCUSSIONS 

A. Empirical Regression Equations 

The Table II summarizes experimental design matrix with the results. A second order quadratic 

model has been intended to develop which will take into account the quadratic and interactive effects 
beside the individual factors. With the help of Design Expert software, the final mathematical models 

of the actual values of the CT in °C, TW in mm and MRR in g/min obtained at 95% confidence interval 
as follows: 

CT(°C)=1207.1727+1996.746429×A+55.7226×B+529.527×C+6.51711×D-

849.125×AC+2.2335×BD-0.897375×CD-3289.571429×A2-744.2678571×B2-0.00739×D2 

(R2=0.9896)             (2) 

TW(mm)=+0.06604+0.1275×A-0.635833×B-0.21645×C+0.0010575×D-0.175×AC-
0.0001625×CD+2.358×A2+0.8395×B2+0.266145833×C2-0.0000012×D2(R2=0.9975)          (3)             

MRR(g/min)=-26.331+25.3575×A+1.5279×B-5.3404×C+0.14648×D+41.675 ×AC +15.19375×BC-

77.725×A2-0.000213475×D2 (R2=0.9697)         (4)    

The goodness of the fit was expressed by the coefficient of determination (R2), which was 

0.9896, 0.9975 and 0.9697 for CT, TW and MRR respectively. This indicates that 98.96%, 99.75% 
and 96.97% of variability in the each response could be explained by the model. This shows that the 
second-order model contains both quadratic and interaction terms and, thus, is more accurate. 

B. Single Objective Optimization with GA and SA 

Regression models are as a fitness function in both algorithms and so, the accuracy of these 

models is very vital in the performance of standard optimization. The GA and SA optimization of the 
hard milling process of regression models was simulated using a matlab codes. In both optimization 
procedures, the lower bound values and upper bound values are used as LB= [0.05 0.2 0.2 200] and 

UB= [0.25 0.6 1.0 400] respectively. The iteration in GA begins with a population of random strings 

0.135mm 

45X 
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representing the design or decision variables. Thereafter, each string is evaluated to find fitness value. 
The critical parameters in GA are the population size number of generations, mutation rate, etc. In case 

of SA, the parameters are varied one at a time randomly to obtain a new set of parameters. With each 
set of parameters, the objective function was determined and the difference in the objective function 

(Δf) with the old and new sets of parameters was calculated. If the new set of values improved the 
objective function, the move was accepted. Otherwise, the move was accepted with a probability of 
exp (Δf/T), where T is the simulated annealing temperature, a dummy variable that is used to control 

the acceptance of uphill moves. Initially, T was fixed at a higher value and periodically annealed by a 
proportional cooling schedule in the outer loop.  

Table 2: Experimental design matrix with results 

Std 

A(fz) B(ae) C(ap) D(Vc) CT TW MRR 

mm/z mm mm m/min °C mm g/min 

1 0.20 0.30 0.40 250 407.01 0.183 2.282 

2 0.15 0.40 1.00 300 591.67 0.199 8.424 

3 0.20 0.50 0.40 350 693.78 0.213 6.175 

4 0.10 0.30 0.40 350 575.26 0.135 2.696 

5 0.15 0.40 0.60 300 574.94 0.143 4.664 

6 0.15 0.40 0.60 300 559.81 0.142 4.93 

7 0.20 0.30 0.40 350 650.84 0.209 3.885 

8 0.15 0.40 0.20 300 491.55 0.175 2.178 

9 0.20 0.50 0.80 250 460.71 0.201 7.981 

10 0.20 0.50 0.80 350 705.47 0.219 9.64 

11 0.10 0.50 0.40 350 609.02 0.139 3.237 

12 0.10 0.30 0.40 250 334.09 0.107 1.196 

13 0.20 0.30 0.80 350 673.63 0.210 7.77 

14 0.15 0.40 0.60 200 244.02 0.112 1.088 

15 0.20 0.50 0.40 250 378.68 0.191 4.055 

16 0.15 0.40 0.60 300 567.64 0.148 5.865 

17 0.10 0.50 0.80 350 696.61 0.153 6.475 

18 0.15 0.40 0.60 300 552.28 0.145 5.554 

19 0.10 0.50 0.40 250 349.57 0.113 2.027 
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20 0.15 0.20 0.60 300 505.2 0.169 2.674 

21 0.25 0.40 0.60 300 575.46 0.243 7.348 

22 0.10 0.50 0.80 250 438.82 0.129 4.355 

23 0.15 0.40 0.60 300 560.73 0.148 5.038 

24 0.20 0.30 0.80 250 441.52 0.195 4.866 

25 0.05 0.40 0.60 300 469.66 0.093 1.696 

26 0.15 0.40 0.60 400 719.09 0.152 5.241 

27 0.15 0.40 0.60 300 568.37 0.142 5.839 

28 0.10 0.30 0.80 250 419.04 0.125 2.433 

29 0.15 0.60 0.60 300 546.17 0.187 7.581 

30 0.10 0.30 0.80 350 600.35 0.144 3.085 

At any specific temperature, the parameters were randomly varied a number of times in the 
inner loop. Thus, the optimum parameter values were obtained after T reached a desired lower value. 

The results of single objective optimization of the responses are presented in Table 3 and 4. From the 
Tables 3 and 4, it is observed that different combinations of the optimal hard milling process 
parameters are attained by GA and SA for individual response. 

Table -3- Results of Single objective optimization using GA 

S. No. Response Objective 
Optimal 

value 

Input parameters 

fz(mm/z) ae(mm) ap(mm) Vc(m/min) 

1 CT Minimize 332.3596 0.1 0.3 0.4 250 

2 TW Minimize 0.0979 0.1 0.379 0.516 250 

3 MRR Maximize 9.9937 0.2 0.5 0.8 343.087 

Table 4: Results of Single objective optimization using SA 

S. No. Response Objective 
Optimal 

value 

Input parameters 

fz(mm/z) ae(mm) ap(mm) Vc(m/min) 

1 CT Minimize 332.3596 0.1 0.3 0.4 250 

2 TW Minimize 0.099 0.101 0.366 0.525 251.597 

3 MRR Maximize 8.7118 0.2 0.499 0.8 265.797 
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C. Multi-objective optimization with GA and SA 

The CT, TW and MRR have been expressed separately as the non-linear functions of input 

variables, such as fz, ae, ap and Vc. Now, the goal was to minimize CT, TW and maximize MRR 
simultaneously, in the hard milling process. In order to find the set of input variables to satisfy both 

the above criteria, the problem formulation becomes a multi-objective optimization by considering 
three objective functions. The following combined objective function (i.e. minimization problem) is 
developed. 

max

)(1

min

)(2

min

)(1
)1(

MRR

MRRuYw

TW

TWuYw

CT

CTuYw
ZMin 

                                            
(5) 

Where W1, W2 and W3 are the weight values assigned to CT, TW and MRR respectively, and 
CTmin and TWmin are the minimum values of CT and TW respectively, and MRRmax is the maximum 

value of MRR. The minimum and maximum values of the responses are obtained from the single 
objective optimization results in both GA and SA. In this present optimization study, for each response 
the equal priority was considered, i.e. W1=W2=W3=0.333. The convergence history of the GA is 

illustrated in Fig.4.  

It is clear from the figure that no substantial change in the fitness value is observed after 38 

generations. This indicates that, the parameters have reached the optimum values, ensuring minimum 
cutting temperature, tool wear and maximum material removal rate. The suitable parameters for GA 
computations as population size, number of generations, scattered crossover, uniform mutation and 

selection are 160, 90, 0.75, 0.20 and tournament selection respectively. Similarly, the convergence 
history of the SA is illustrated in Fig.5. The best fitness attained during each iteration of the simulated 

annealing algorithm optimization decreased till it became relatively constant after 750 generations. In 
case of SA computations, the parameters are annealing function, annealing interval, initial temperature 
and data type set as  Boltzmann annealing, 100,100 and double respectively. The desired optimal 

values for GA and SA are shown in Table 5. The objective solution of SA is better than GA was 
observed in Table 5. 

D. Verification 

A verification of the results using the set of optimized parameters was accomplished by 
performing the experiments incorporating the optimized variables. The experiments were conducted 

in triplicate and the average values of each response as shown in Table 6 .These experimental findings 
were in close agreement with the GA and SA based optimal solutions. The error between the 

theoretically predicted value and the experimental measurement is less than 5%. This confirms the 
applicability of these evolutionary computational techniques are reasonable for optimization of process 
parameters in the hard milling process. 
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Figure 4: Best fitness (lowest MSE value) versus generation during the optimization procedure of GA 

 

Figure 5: Best function value versus Iteration during the optimization procedure of SA 
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Table 5: Multi-objective optimization results using GA and SA 

Optimization 
method 

Z 

Optimal values Input parameters 

CT TW MRR fz ae ap Vc 

°C mm g/min mm/z mm mm m/min 

GA 0.63695 362.238 0.10145 2.1169 0.1 0.438 0.495 250 

SA 0.62476 367.916 0.10541 2.58054 0.1 0.469 0.523 250.412 

Table 6: Optimal conditions and confirmation runs of two different approaches 

Optimization 

method 

Optimal values Input parameters 

fz ae ap Vc 

CT(°C) TW(mm) MRR(g/min) 

Pred./Exp. Pred./Exp. Pred./Exp. 

GA 0.1 0.438 0.495 250 362.237/361.543 0.101/0.093 2.116/2.104 

SA 0.1 0.469 0.523 250.4 367.915/365.647 0.105/0.089 2.58/2.234 

V. CONCLUSION 

The present article investigates multi-objective optimization of process parameters in hard 
milling of 100MnCrW4 (Type O1) cold work tool steel using evolutionary algorithms. Following 

conclusions can be drawn on the basis of results obtained: 

1. A central composite rotatable design was effectively used for experiments and to develop the 
regression models. 

2. The predicted values match the experimental values reasonably well, with R2 of 0.9896 for CT, R2 
of 0.9975 for TW and R2 of 0.9697for MRR. 

3. The GA and SA offer simple and effective tools for searching the optimal cutting conditions 
effectively. 

4. The objective solution of SA is better than GA was obtained. 

5. The validity of the optimized results was checked by conducting conformity test, and the error is 
less than ±5% achieved. 

6. The selection of optimum values is essential for the process automation and implementation of a 
computer-integrated manufacturing system.  
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